Tangent	categories

Vector bundles

Connections 000000000000000

Connections in tangent categories

Geoff Cruttwell Mount Allison University (joint work with Robin Cockett)

Union College Mathematics Conference Union College, October 20th, 2013

Tangent categories	Vector bundles	Connections	Conclusions
●000	000	0000000000000	00
Tangent category	definition		

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category ${\mathbb X}$ with:

- an endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$;
- a natural transformation $T \xrightarrow{p} I$;
- for each M, the pullback of n copies of $TM \xrightarrow{p_M} M$ along itself exists (and is preserved by T), call this pullback T_nM ;
- such that for each M ∈ X, TM → M has the structure of a commutative monoid in the slice category X/M, in particular there are natural transformation T₂ → T, I → T;

Tangent categories	Vector bundles	Connections	Conclusions
0●00		0000000000000	00
Tangent category	definition conti	nued	

Definition

- (canonical flip) there is a natural transformation c : T² → T² which preserves additive bundle structure and satisfies c² = 1;
- (vertical lift) there is a natural transformation $\ell : T \to T^2$ which preserves additive bundle structure and satisfies $\ell c = \ell$;
- various other coherence equations for ℓ and c;
- (universality of vertical lift) the following is a pullback diagram:

Tangent categories	Vector bundles	Connections	Conclusions
00●0	000	0000000000000	00
Examples			

- (*i*) Finite dimensional smooth manifolds with the usual tangent bundle structure.
- (ii) Convenient manifolds with the kinematic tangent bundle.
- (iii) Any Cartesian differential category is a tangent category, with $T(A) = A \times A$ and $T(f) = \langle Df, \pi_1 f \rangle$.
- *(iv)* The infinitesimally linear objects in any model of synthetic differential geometry.
- (v) Both commutative ri(n)gs and its opposite category have tangent structure.
- (vi) The category of C- ∞ -rings has tangent structure.

Tangent categories	Vector bundles	Connections	Conclusions
000●	000	0000000000000	00
Some theory of ta	angent categories	;	

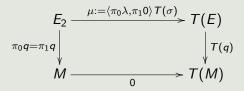
- (i) A vector field on M is a map $X : M \to TM$ which is a section of $p : TM \to M$.
- (ii) These vector fields have a Lie bracket operation [X, Y] which satisfies the usual properties of a bracketing operation.
- (iii) The "tangent spaces" of a tangent category form a Cartesian differential category.
- (iv) T is automatically a monad.
- (v) A tangent category in which T is representable has a commutative rig R with $R^D \cong R \times R$ (ie., it satisfies the "Kock-Lawvere" axiom).

Tangent categories	Vector bundles	Connections	Conclusions
	●00	0000000000000	00
Differential bu	indles		

Definition

A **differential bundle** in a tangent category consists of an additive bundle $q: E \to M$ with a map $\lambda: E \to TE$ such that

- all pullbacks along q exist and are preserved by T;
- $(\lambda, 0)$ and (λ, ζ) are additive bundle morphisms;
- the following is a pullback diagram:



where E_2 is the pullback of q along itself;

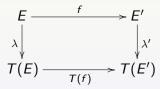
•
$$\lambda \ell_E = \lambda T(\lambda)$$
.

Tangent categories	Vector bundles	Connections	Conclusions
	○●○	0000000000000	00
Examples and	properties		

- (i) Any object has an associated "trivial" differential bundle $1_M = (1_M, 1_M, 1_M, 0_M)$.
- (ii) The tangent bundle of each object $M, p: TM \rightarrow M$ is a differential bundle.
- (iii) The pullback of a differential bundle along any map is a differential bundle.
- (iv) If $q: E \to M$ is a differential bundle, so is $Tq: TE \to TM$.
- (v) Each fibre over a point E_aM is a "vector space", ie., $T(E_aM) \cong E_aM \times E_aM$.

Tangent categories	Vector bundles	Connections	Conclusions
0000	00●	0000000000000	00
Differential bundle	e morphisms		

- A morphism of differential bundles between differential bundles (q : E → M), (q' : E' → M') is simply a pair of maps f : E → E', g : M → M' making the obvious diagram commute.
- A morphism of differential bundles (f, g) is **linear** if it also preserves the lift, that is,



commutes.

(This corresponds to the ordinary definition of linear morphisms between vector bundles in the canonical example).

Tangent categories	Vector bundles	Connections	Conclusions
0000	000	•oooooooooooooo	00
What are conne	ctions?		

Intuitive idea: can "move tangent vectors between different tangent spaces". Moving a tangent vector around a closed curve measures the "curvature" of the space. But how to precisely express what a connection is? Some answers:

- as a "horizontal subspace";
- as a "connection map";
- as a notion of "parallel tranport";
- as a "covariant derivative".

Tangent categories	Vector bundles	Connections	Conclusions
0000		•oooooooooooooo	00
What are connec	tions?		

Intuitive idea: can "move tangent vectors between different tangent spaces". Moving a tangent vector around a closed curve measures the "curvature" of the space. But how to precisely express what a connection is? Some answers:

- as a "horizontal subspace";
- as a "connection map";
- as a notion of "parallel tranport";
- as a "covariant derivative".

Quoting Spivak:

"I personally feel that the next person to propose a new definition of a connection should be summarily executed."

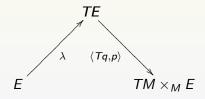
Tangent categories	Vector bundles	Connections	Conclusions
0000	000	000000000000	00
Claim			

I claim that:

- Connections have a very natural expression in terms of the lift map for differential bundles.
- The canonical flip map *c* gives a natural and easy way to express the properties of being "flat" or "torsion-free".

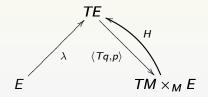
Tangent categories	Vector bundles	Connections	Conclusions
0000	000	000000000000	00
Two fundamental	maps		

A differential bundle has two key maps involving *TE* whose composite is the zero map:



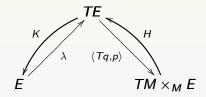
Tangent categories	Vector bundles	Connections	Conclusions
0000		000●000000000	00
Horizontal lift			

A connection consists of a linear section of *H* of $\langle Tq, p \rangle$ called the **horizontal lift**...



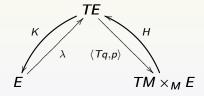
Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000000000	00
Connector			

which in addition has a linear retraction K of λ called the **connector**:



0000	000	000000000000	00
Connection def	inition		

that satisfies the equations HK = 0 and $(\lambda K \oplus p0) + \langle T(q), p \rangle H = 1$.



Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000000000	00
Connections in a	tangent categor	y	

Complete definition:

Definition

A **connection** on a differential bundle $q: E \rightarrow M$ consists of:

- a linear section K of λ ;
- a linear retraction H of $\langle T(q), p \rangle$;
- such that HK = 0 and $(\lambda K \oplus p0) + \langle T(q), p \rangle H = 1$.

A connection on the tangent bundle $p: TM \rightarrow M$ is called an affine connection.

Proposition

If a differential bundle q has a connection (K, H) then TE is the pullback (over M) of TM and two copies of E.

Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000000000	00
Canonical examp	les		

Any differential object A (Cartesian spaces in the standard example) is a differential bundle over 1 and for these one can define:

- $K: TA \rightarrow A$ by K(v, a) := v and
- $H: A \rightarrow TA$ by H(a) := (0, a).

Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000●000000	00
Canonical examp	les		

Any differential object A (Cartesian spaces in the standard example) is a differential bundle over 1 and for these one can define:

- $K: TA \rightarrow A$ by K(v, a) := v and
- $H: A \rightarrow TA$ by H(a) := (0, a).

The tangent bundle of any differential object A is also a differential bundle $p: TA \rightarrow A$ with a canonical (affine) connection:

- $K': T^2A \rightarrow TA$ by K(d, v, w, a) := (d, a) and
- $H': A \times A \times A \rightarrow T^2A$ by H(v, w, a) := (0, v, w, a).

Tangent categories	Vector bundles	Connections 00000000000000	Conclusions 00
K from H			

Proposition

Suppose (\mathbb{X}, \mathbb{T}) is a tangent category with negatives, and H is a section of $\langle T(q), p \rangle$ on a differential bundle q. Then the pair $(\{1 - \langle Tq, p \rangle H\}, H)$ is a connection on q.

Note that this requires negatives! It also uses the universal property of λ .

Tangent	categories	

Vector bundles

Connections

Conclusions 00

H from K

Proposition

Let (\mathbb{X}, \mathbb{T}) be a tangent category, q a differential bundle, and K a connector on q. If q has a section J of $\langle T(q), p \rangle$, then the pair $(K, J(1 - (\lambda K \oplus p0)))$ is a connection on q.

This also requires negatives, but also needs $\langle T(q), p \rangle$ to have at least one section J (the resulting connection is independent of the choice of such J).

Tangent categories	Vector bundles	Connections	Conclusions
0000		000000000000000	00
Covariant derivat	ive		

For a differential bundle q, let $\chi(q)$ denote the set of sections of q.

Covariant der		00000000000000	00
0000	000	00000000000000	00

For a differential bundle q, let $\chi(q)$ denote the set of sections of q.

Definition

Let (K, H) be a connection on q. Its **covariant derivative** is an operation

$$\nabla K : \chi(\mathsf{p}) \times \chi(\mathsf{q}) \to \chi(\mathsf{q})$$

given by mapping $(w: M \rightarrow TM, s: M \rightarrow E)$ to

$$\nabla K(w,s) := M \xrightarrow{w} TM \xrightarrow{T(s)} TE \xrightarrow{K} E$$

(This corresponds to one of the definitions of connection in the literature).

Tangent categories	Vector bundles	Connections	Conclusions
0000	000	00000000000000	00
Flat connections			

The definition of a connection being flat in the literature is quite complicated, but by using the map c we can make a very simple definition:

Tangent categories	Vector bundles	Connections	Conclusions
0000	000	000000000000000	00
Flat connections			

The definition of a connection being flat in the literature is quite complicated, but by using the map c we can make a very simple definition:

Definition

Say that a connection is **flat** if cT(K)K = T(K)K.

This does correspond to the usual definition:

Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000000000	00
Curvature			

Definition

For a tangent category with negatives, the **curvature** of a connector K on q is the function

$$F: \chi(M) imes \chi(M) imes \chi(E) o \chi(E)$$

given by mapping $(w_1: M \to TM, w_2: M \to TM, s: M \to E)$ to

$$\mathsf{FK}(w_1,w_2,s):=\nabla(w_1,\nabla(w_2,s))-\nabla(w_2,\nabla(w_1,s))-\nabla([w_1,w_2],s)$$

(Where the bracketing operation above is the abstract Lie bracket in tangent categories).

Theorem

If (K, H) is a flat connection then its curvature is identically 0.

Tangent categories	Vector bundles	Connections 000000000000	Conclusions 00
Torsion_free cor	inections		

Torsion-free connections are connections on the tangent bundle for which the movement of tangent vectors does not "twist". Again there is a simple definition of this in our setting:

Definition

Say that a connection on a tangent bundle $p: TM \rightarrow M$ is **torsion-free** if cK = K.

Tangent categories	Vector bundles	Connections 000000000000	Conclusions 00	
Torsion-free connections				

Torsion-free connections are connections on the tangent bundle for which the movement of tangent vectors does not "twist". Again there is a simple definition of this in our setting:

Definition

Say that a connection on a tangent bundle $p: TM \rightarrow M$ is **torsion-free** if cK = K.

This does correspond to the usual definition:

Theorem

If (K, H) is a torsion-free connection with associated covariant derivative ∇ then

$$[w_1, w_2] - \nabla(w_1, w_2) - \nabla(w_2, w_1)$$

is identically zero.

Tangent categories	Vector bundles	Connections	Conclusions
0000	000	0000000000000	●0
Conclusions			

To sum up:

- Connections can be defined in tangent categories in a way that makes natural use of the lifting map λ .
- Flat and torsion-free connections can be defined in tangent categories in a way that makes natural use of the map *c*.
- In special cases, our definition of connection is equivalent to the usual one(s).
- The way presented here is perhaps the most natural, categorically.

Tangent categories	Vector bundles	Connections	Conclusions
0000		0000000000000	⊙●
Future work			

- What do connections look like in the different tangent categories? In particular, does it help with understanding connections in situations without negatives (eg., tropical geometry)?
- Can we define de Rham cohomology of vector bundles with a connection?
- How does this fit with Rory Lucyshyn-Wright's theory of integration?

Tangent categories	Vector bundles	Connections 0000000000000	Conclusions ⊙●
Future work			

- What do connections look like in the different tangent categories? In particular, does it help with understanding connections in situations without negatives (eg., tropical geometry)?
- Can we define de Rham cohomology of vector bundles with a connection?
- How does this fit with Rory Lucyshyn-Wright's theory of integration?

References:

• Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG. To appear in *Applied Categorical Structures*, preprint available at

http://www.mta.ca/~gcruttwell/publications/sman3.pdf

 Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3, 1984.