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Originally developed as an exhibition for the Providence Art Clubs’ Dodge Gallery in
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1. Introduction

What is the best way to display a variety of surfaces so as to encourage many

people to interact with them? Stage an exhibit. In March of 1996, the Providence

Art Club, one of the oldest such clubs in the country, hosted the show “Surfaces

Beyond the Third Dimension” in their Dodge House Gallery. The first incarnation

of that exhibition lasted for two weeks, and the gallery book includes the signatures

of dozens of visitors, including artists, students, and mathematicians. The physical

exhibit has long since been dismantled, yet the show lives on as a virtual experiencea

and we still receive comments in the on-line guest book. In this article, we review the

processes used in constructing both the original show and its virtual continuation,

and raise a number of questions about the potential of this medium for reaching

large numbers of people with many different backgrounds and interests.

aSee the URL 〈http://www.math.brown.edu/~banchoff/art/PAC-9603/〉.
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2. The Exhibit Then and Now

The Dodge House Gallery has a square base and one interior partition, providing

well-lighted wall space for twelve large photographic reproductions of computer

graphics images as well as an alcove for display of a continuous videotape featuring

two three-minute videos (see Color Figure 1, left). A guidebook gave information

about the nature of the objects, including technical descriptions of the software

and hardware used in the design of the objects and the Ilfochrome process used in

their reproduction. Additional pages gave mathematical descriptions of the various

pieces, as well as references to places where they had appeared either in research

articles or as illustrations in books and journals. There was also a well-attended

afternoon gallery talk, describing the origins of the project and including a guided

tour of the exhibit.

All of these aspects of the physical exhibit are enhanced in the virtual counter-

part. In a certain sense, the on-line version contains much more than the original.

To what extent does it capture and augment the experience of those who visited

the actual gallery opening, and came back to see and respond to the images on the

walls? There are many questions raised by this means of portraying mathematical

art and design, and we will address some of them now.

What is it that we are showing? Most of the images included were originally

studied as abstract geometric constructions given by parametric surfaces in three-

and four-dimensional space. In some cases, there is an elaborate theory behind the

illustration, whereas in other cases, the phenomena are not yet well understood. In

several instances, the display itself represents an innovation not only in the method

of displaying a surface but in representing its mathematical properties in a way that

suggests new results.

3. A Tour of the Exhibit

“Math Horizon” is so named because it appeared as the cover image for an article

in the journal “Math Horizons”, published by the Mathematical Association of

America. The object under investigation is an immersion of the two-dimensional

sphere into four-space in such a way that there is exactly one point where the

surface intersects itself. In this sense, it represents an analogue of the figure-eight,

an immersion of the one-sphere into two-space self-intersecting at a single point.

In neither case can the immersion be deformed into an embedding, with no self-

intersections, without introducing local singularities such as cusps. The particular

image is obtained by projecting centrally from a point on the three-sphere so that

the observer appears to be inside the object. Color depicts different circles of

latitude on the original two-sphere. The north and south poles are both mapped

to the origin in four-space and no other pair of points is mapped to a common

point in four-space. Projecting into three-space does introduce a curve of double

points, including the image of the origin. The example was originally introduced in

a research/expository article on the geometry of characteristic classes for surfaces

in four-space written together with Frank Farris [2].
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When this image was used as the cover for the journal, it was rotated ninety

degrees from how it appeared in the show. The placement on the exhibit wall was

voted on by a group of artists at the Art Club. This orientation was preferred since

it more closely suggested a sunset over the water. One artist strongly wanted the

image to be hung upside down from the position finally chosen, precisely because it

presented the same geometrical picture but with an inversion of the expected sunset

color values. There is, of course, no right way to hang such an abstract image. One

exhibitor at the PAC expressed this ambiguity in his show by mounting some pieces

on rotating discs, but this does not work for a basically rectangular piece.

The “Torus Triptych” is an example of commercial art, being new illustrations

from the second edition of the author’s book Beyond the Third Dimension [1].

The various images in each of the three parts (one is shown in Figure 1) indicate

the “water-level curves” as a torus is gradually submerged into a liquid, giving

quite different collections of curves depending on the way the torus is positioned

with respect to a horizontal plane. There are links to that book in the author’s

bibliographyb as well as a direct link to Amazon Books, which provides information

about it together with an opportunity to order it directly.

Further down on the same wall are three “Tetraviews” (Color Figure 2), each

showing an assembly of five images, two smaller squares partially obscured by op-

posite corners of a large central square, which has its other two corners partially

obscured by two squares of medium size. The display is inspired by the work of

the artist Hans Hofmann, who began in the Bauhaus School. The five images are

different views of a single surface in four-dimensional space, and the four corners

show projections into the four coordinate hyperplanes. The dominant fifth image is

in equilibrium, in a real sense the average of the other four. The ability to navigate

between any two of these views is crucial for the understanding of the surface, ac-

cording to the article “Understanding Complex Function Graphs” by the authors

in the prototype volume of the totally electronic journal Communications in Vi-

sual Mathematics, sponsored by the Mathematical Association of America and the

National Science Foundation. There is a link from each of these pictures to that

article.

Related to the Tetraview series is the pair of “Necklace” views on the next wall

(Color Figure 1, right, and Figure 6). Once again each subject is the graph of

a function of a complex variable, first the complex squaring operation and then

the cubing function. In each case there are five images, starting with a disc and

ending with a doubly or triply covered disc, with intermediate steps possessing three-

or four-fold symmetry. Both pages include links to the “Understanding Complex

Function Graphs” article in Communications in Visual Mathematics mentioned

above. The first of these pictures appeared in rotated form as “Z-Squared Crescent”

on the cover of the Notices of the American Mathematical Society, with a technical

explanation inside, and there is also a link to that publication. A black-and-white

bSee the URL 〈http://www.math.brown.edu/~banchoff/〉 for links to the author’s annotated
bibliography.
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version of this same image was used on the postcard invitation to the show, which

is reproduced on the opening page of the web site.

Next is one of the most elaborate entries in the exhibit, not because of the

complexity of the image but because of the linkages. “Triple-Point Twist” (Figure 2)

appeared in slightly rotated form on the cover of the Notices of the AMS as well as

on the cover of a statistics volume by Gergen and Iversen. As chapter headings in

that latter volume there were fourteen views of this object rotating in three-space.

These can be accessed in the virtual exhibit either as an MPEG movie or as a virtual

reality VRML document, enabling the viewer of the electronic version to interact

with the object in ways impossible for the gallery visitor.

Even more significant than watching the object rotate is to view and review

an MPEG movie that makes the object unfold, changing one of the parameters

that twist the “bamboo curtain” ruled surface so that it intersects itself, forming a

triple point. The equations defining the surface have been studied extensively by

David Mond and Washington Marar [4], and there are links to several items in their

bibliography for the interested mathematician reader.

Once again, it is these enhancements that represent the true innovation in such a

virtual gallery. The viewer who becomes fascinated by one or another of the aspects

of an object can investigate it at an appropriate level, depending on the background

and interests of the individual. In particular, it is possible in some cases to view

and manipulate phenomena that relate the particular object to a wider area of

mathematics.

The final wall has two parts, the first of which contains a series of three images

presented at the celebration of the hundredth birthday of Prof. Dirk Struik. On

September 23, 1994, at Brown University, Prof. Struik gave his own centenary

lecture “Mathematicians I Have Known”, and the gallery includes a photograph

of him during that event. To the left of his picture are three geometric figures

developed during the summer of that year by teams of students working at Brown.

In the electronic version there is a link to the story about that lecture from the

Notices of the AMS .

Each of the three images that were presented to Prof. Struik has its own set

of links. “The Temple of Viviani” is an enhancement of a standard figure from

descriptive geometry and graphical solid modeling, depicting the intersection of a

sphere with a circular cylinder of half its radius passing through the center of the

sphere and tangent to it at one point of the equator. This example is found in any

multivariable calculus book since it is one of the first interesting cases for which

it is possible to evaluate both the volume and the surface area of the intersection.

It is also one of the most frequently misdrawn illustrations, since many volumes

draw only the top half and either make the bottom point of the curve smooth or

cuspidal, whereas the computer diagram clearly indicates a figure-eight curve with

a transversal crossing. From the point of view of Lagrange multipliers, this position

represents the non-transversal intersection of a cylinder with the level set of a dis-

tance function to a point (or, dually, the intersection of a sphere with the distance
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function to a line). This image accentuates the intersection curve by presenting it

as a small tube. In the exhibition, there was a mention that the same figure was

featured in one of the continuously projected videotapes shown in the alcove of the

gallery. The history of the image and its use in calculus was presented in the exhibit

booklet, and as a link on the electronic version. The image rendering was done by

Julia Steinberger and Neel Madan, while the videotape sequence was designed and

executed by Ying Wang.

The second image in this sequence, a ray-traced self-intersecting Klein bottle,

also refers to a sequence in the same videotape, a fly-through which intersects the

surface at two positions. The equations for this image were developed by David

Kaplan and the renderings in the videotape, together with the soundtrack, are the

work of Jeff Beall.

The final image of the three presents a study of the evolute surfaces of a right

helicoid. This view was created by Cathy Stenson, in connection with her research

on the mathematics of DNA coiling.

The last image featured in the exhibit “Surfaces Beyond the Third Dimension”

is an interior view of a cyclide of Dupin, a torus on a three-dimensional sphere in

four-space projected stereographically from a point on the torus itself, leading to a

third-order algebraic surface expressed as a union of circles (and four straight lines).

These curves are orbits of a Hamiltonian dynamical system and the fibers over a

great circle of the Hopf mapping from the three-sphere to the two-sphere. The

exhibit booklet and the electronic links refer the viewer to several articles written

by the author and colleagues in Applied Mathematics and Computer Science [3],

examining different aspects of this extremely important surface. This image is also

featured on the cover of the Scientific American Library volume Beyond the Third

Dimension [1].

Finally, there is the customary guest book, into which visitors to the actual

exhibit wrote their signatures and comments. The electronic version enables visitors

to the web site to enter their own comments and to read those of other visitors.

4. The Mathematics Behind the Images

The surfaces presented in the exhibit “Surfaces Beyond the Third Dimension” all

represent views of four-dimensional objects, either as projections into three-space

of surfaces defined in four-space, or as a sequence of related surfaces in three-space,

where time plays the role of the fourth dimension.

The “Torus Triptych” and “Triple-Point Twist” are examples of the latter, and

we begin with these. A torus can be generated by rotating a circle around an axis

in the same plane as the circle, but not intersecting it. We can produce parametric

equations for such a torus of revolution as follows: if we consider a circle of radius b

in the xz-plane, centered at the point (x, z) = (a, 0) on the x-axis, then the points on

the circle are given by (x, z) = (a+ b cos θ, b sin θ). If we rotate this circle about the

z-axis, then each point (x, z) on the original circle traces out a new circle in a plane

parallel to the xy-plane; the radius of this new circle will be x (the distance of the
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original point from the z-axis), and the height of the plane containing the new circle

will be z. This means the new circle can be parameterized by (x cosφ, x sinφ, z).

As we let (x, y) vary over the entire original circle, we obtain a parameterization

for the torus:

T (θ, φ) = ((a+ b cos θ) cosφ, (a+ b cos θ) sinφ, b sin θ). (1)

Figure 1: Slicing sequence for a tilted torus. The second slice is formed by two
overlapping circles.

In “Torus Triptych” we used a =
√
2 and b = 1. This basic torus was rotated

to three different positions and then sliced by a horizontal plane at various heights

to obtain the three sequences presented. The lower sequence (in blue) has a partic-

ularly interesting slice in the second image (Figure 1). Here, the horizontal plane

intersects the torus in two overlapping circles of equal radius. This sequence of

slices was discussed recently in [5].

Figure 2: A ruled surface that has self-intersection that forms a triple point.

The surface shown in “Triple-Point Twist” (Figure 2) is one from a series of

surfaces described by David Mond and Washington Marar in [4], where they analyze

a number of germs of singularities of surfaces. This particular example is a ruled

surface given by the equations

(x, y, z) = (u, v3 − cv, uv + v5 − cv3) (2)

where c is a parameter that can be varied. For values of c greater than 0, the surface

has no self-intersection, but for values of c less than 0, a triple point and two pinch
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points appear. For the image shown in the exhibit, c = −1, but an MPEG movie is
available showing a series of different values of c as it varies from −1 to 1. For each
fixed value of u, allowing v to vary produces a planar curve in the plane x = u. The

rulings for the surfaces are the straight lines produced when v is held fixed and u

is allowed to vary.

While the variable c plays the role of the fourth dimension in the “Triple-Point

Twist” and time is the fourth dimension in “Torus Triptych”, other surfaces in the

exhibit are described originally as objects in four-space and we are presented with

three-dimensional projections of them. This is the case in the image titled “Math

Horizon”, which is a view of a two-dimensional sphere immersed in four-space so

that it has exactly one point of self-intersection. To see how this works, first note

that surfaces in four-space generally intersect in points rather than in curves as they

do in three space. For example, if we label the axes x, y, z, and w, then the xy-plane

and the zw-plane are two-dimensional planes in four space, but they intersect in

only one point: the origin.

To form the sphere depicted in “Math Horizon”, we began by taking the unit

disc in the xy-plane and the unit disc in the wz-plane; since they intersect in a

single point, these form the essential self-intersection in the surface. The trick now

is to attach the boundaries of these two discs so as to form a sphere, and in such a

way that no additional self-intersection is produced. The boundaries are two circles,

which can be parameterized as (cos θ, sin θ, 0, 0) and (0, 0, cos θ, sin θ). For a given θ,

these two points, together with the origin, determine a plane in four-space (think of

the points as vectors based at the origin that span the plane). For different values

of θ, these planes intersect only at the origin, so if, for each θ, we connect the two

boundary points by a curve lying in this plane, we will have joined the two disc

boundaries to form a sphere with no additional self-intersection, as desired.

(cos θ, sin θ, 0, 0)

(0, 0, cos θ, sin θ)

Figure 3: The two points (cos θ, sin θ, 0, 0) and (0, 0, cos θ, sin θ) can be joined by
circular arcs (left). A smooth figure-eight can replace the piecewise curve (right).

Note that the two points, when considered as vectors at the origin, are perpen-

dicular unit vectors, so they act just like the unit x- and y-axes in the xy-plane.

The intersection of the plane spanned by these vectors and one of the discs would

be the segment from −1 to 1 along the x-axis, and with the other, the correspond-
ing segment on the y-axis. These two segments form a “cross” at the origin, and
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one natural way to attach them is by two circular arcs thus forming a figure-eight

with an axis of symmetry along the line y = x (Figure 3, left). A piecewise-defined

version of the two-sphere in four-space can be produced in this way. On the other

hand, we could form a smooth version of the surface if we had a smooth (rather

than piecewise-defined) figure-eight (Figure 3, right).

The equation (cos t, sin 2t) parameterizes a figure-eight that has the x-axis as

an axis of symmetry, though the equation (cos t, 1
2
sin 2t) = (cos t, sin t cos t) =

cos t (1, sin t) is more aesthetically pleasing, as the lobes of the figure-eight are

rounder and cross at an angle of 90 degrees. Rotating this curve by 45 degrees

about the origin produces a smooth figure-eight with its axis along the line y = x

and its crossing tangent to the x and y axes, as desired. Using a standard rotation

matrix with angle φ = π
4
, we obtain

(x, y)=







cosφ − sinφ
sinφ cosφ













cos t
cos t sin t
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
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√
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













1
sin t







=
√

2
2
cos t







1 −1
1 1













1
sin t







=
√

2
2
cos t







1− sin t
1 + sin t





 .

(3)

Writing this in vector form, we find

(x, y) =
√

2
2
cos t

[

(1− sin t)(1, 0) + (1 + sin t)(0, 1)
]

. (4)

Now, replacing the vectors (1, 0) and (0, 1) by the two vectors from the boundary of

the discs in four-space gives a smooth parameterization by t and θ of the two-sphere

in four-space with exactly one point of transverse self-intersection:

√
2

2
cos t

[

(1− sin t)(cos θ, sin θ, 0, 0) + (1 + sin t)(0, 0, cos θ, sin θ)
]

. (5)

Note that this surface lies within the unit sphere in four-space and touches the

unit sphere when t = 0, namely along the curve
√

2
2
(cos θ, sin θ, cos θ, sin θ), a circle

on the four-sphere. The image shown in “Math Horizons” is the stereographic

projection of this surface from the point on this circle where θ = 0. Because the

surface passes through the point of projection, it’s image appears to extend out to

infinity in three-space. Bands of the surface have been removed to help make the

structure of the surface and its parameterization more apparent.

Across the gallery from “Math Horizons” is a similar image titled “In- and

Outside the Torus”. Unlike the tori in “Torus Triptych”, this is a projection of a

torus lying originally in four-space, given parametrically by (cos θ, sin θ, cosφ, sinφ).

Notice that this represents the cross product of two circles, one in the first two

coordinates, and one in the second two. Note also that every point on this torus is
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at a distance of
√
2 from the origin, so the entire torus lies on the sphere of radius√

2 in four-space. (In fact, this torus separates the sphere into two congruent solid

tori.) Stereographic projection from the point (0, 0, 0,
√
2) in four-space yields an

image of the torus in three-space, and since stereographic projection maps circles

to circles, the image of the torus given above under this map would be a torus

of revolution. In contrast to the parameterization given for the “Torus Triptych”,

however, this one has the interesting property that it is a conformal mapping of the

(θ, φ)-plane onto the torus of revolution (Figure 4, left).

Figure 4: A torus projected from four-space can look like a torus of revolution (left).
If part of it is closer to the projection point, part will appear larger, and it will form
a cyclide of Dupin (right).

If we rotate the original torus in four-space before projecting it, the image

changes: a portion of the torus moves closer to the point of projection, so its

image gets larger (just as a shadow gets larger if you move an object closer to the

light source), and part of it moves farther away from the point of projection, so

its image gets smaller (Figure 4, right). In the projection of the torus, we would

see one part of the ring get thicker and the opposite part get thinner. The result

is known as a cyclide of Dupin. (The offset surfaces of these projections are also

cyclides, and it turns out that every cyclide can be produced in this way.) As the

torus rotates further, the torus gets fatter and fatter on one side, and thinner and

thinner on the other. After a rotation of 90 degrees, the torus will pass through the

point of projection, and so its image will appear to extend to infinity; the images of

the two generating circles for the torus will be two infinite, straight lines in three-

space. (Two other circles on the torus also map to straight lines in three-space: the

(1, 1)-curve, described below, that passes through the point of projection, and the

analogous (1,−1)-curve.) As the torus rotates further, its image again becomes a
finite torus, but what was outside the original torus is now inside, and vice versa;

the torus in three-space has “turned inside out” by passing through infinity.

The image “In- and Outside the Torus” represents the 90 degree rotation, the

point of transition when the outside and inside are begin exchanged. Indeed, at this

instant, the image of the torus divides all of three-space into two congruent parts,

the images of the two solid tori mentioned earlier that form the three-sphere in
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four-space with this torus as their common boundary. In the picture, the viewer is

in one of the two congruent pieces (with the handle of the torus moving horizontally

through the center of the picture), and the other piece is “behind” the surface (with

the handle moving vertically through the center). A rotation of three-space about

a diagonal line from the upper left to the lower right would interchange the two

congruent pieces. In the picture, bands on the torus are removed to help make

the structure clearer. In this case, the bands are formed by neighborhoods of the

(1, 1)-curves on the torus, which are the images of curves of the form θ = φ + c in

the (θ, φ)-plane.

For those interested in producing similar pictures themselves, we describe the

stereographic projection map and rotations in four-space in more detail. Stere-

ographic projection from the point (0, 0, 0, d) is the map pd:R
4 → R3 given by

pd(x, y, z, w) =
d

d−w (x, y, z) for all points where w 6= d. In our case, d =
√
2. As

with rotations in the xy-plane, rotations in four-space can be represented by matrix

multiplication. For example, a rotation in the xw-plane by an angle of ψ is given

by the map

Rψ(x, y, z, w) =





















cosψ 0 0 − sinψ
0 1 0 0
0 0 1 0
sinψ 0 0 cosψ









































x
y
z
w





















. (6)

The composition of these two maps with the parameterization of the torus given

above will yield the series of pictures described here (as ψ varies from 0 to 90 degrees

and beyond).

The three “Tetraviews” that appear in the gallery are an attempt to better

understand graphs of complex functions. The graph of a function of a single complex

variable lies in complex two-space, which can be associated in a natural way with

real four-space. That is, if z = x+yi and w = f(z) = u+vi, then the point (z, f(z))

on the graph of f can be though of as (x, y, u, v) in four-space, and so the graph is

then a surface in four-space. How can we investigate this surface?

Before answering that question, let’s first consider how we can understand an

object in three-space, say a cube with corners at (±1,±1,±1). There are three
mathematically natural views of this cube in three-space: one looking at it from a

point on the positive x-axis, one from the positive y-axis and one from the positive

z-axis. From each axis we see a square face of the cube (although a different face in

each case). Of course, there are many other views of the cube as well, since there are

many other directions from which to view it. One way to think of these directions is

by imagining a large sphere enclosing the cube; every point on the sphere represents

a different viewpoint, and hence a different view of the cube. The three views we

described above are from where the positive coordinate axes intersect the sphere.

These three points form the vertices of a spherical triangle, and we can ask:

What does the view look like from different points on this triangle? If we move

along an edge of the triangle from one vertex to another, we go from looking at

one face of the cube to looking at another. Our intermediate views show one face
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shrinking down until we see it edge-on and it becomes just a line, while another face

that we had been seeing edge-on expands to become a full square. This corresponds

to a rotation of the cube about the axis whose vertex is opposite the edge we are

traversing; in this way, each edge yields a rotation about one of the axes. Half-way

between two vertices on the spherical triangle our view is directly at one of the

edges of the cube and both adjacent faces are seen as the same size, though neither

looks square at this point (Figure 5, center). If we view the cube from the point

at the center of the spherical triangle, we will be looking directly at a corner of the

cube, and again we have a symmetric view, but this time including all three faces,

still with some distortion (Figure 5, right).

Figure 5: Three views of a cube: looking directly at a face (left), directly at an edge
(center), or directly at a corner (right). These correspond to viewpoint located at
various spots on a spherical triangle: at a vertex, the center of an edge, or the center
of the triangle.

Now suppose the cube is transparent and we place some object inside the cube.

Then the three views from the vertices of the spherical triangle give us the three

views of the object through the cube’s three sides (these are like an architect’s three

views: the floor-plan from above, the side elevation and the front elevation). As

we move along the edges of the spherical triangle, we rotate between these views

of the object inside the cube (e.g., moving from the front to the side elevation).

Looking from the center of the triangle we can see into all three sides of the cube at

once, giving a combination view that is, in a sense, the average of the other three

(it corresponds to the architect’s perspective drawing of a house).

The tetraviews carry out this same process in four-space. The cube is now a

hypercube in four-space (it is transparent so it doesn’t appear in the images itself),

and the object inside is the graph of a complex function. The different viewpoints

lie on a large three-sphere in four-space that contains the hypercube, and since

there are four axes, these intersect the sphere at four points. These points form the

vertices of a spherical tetrahedron on the three-sphere (thus the name “tetraview”).

The four views from the corners of this tetrahedron represent projections of the

function graph along each of the coordinate axes. These are shown in the picture

(Color Figure 2) at the four corners of the image and are arranged so as to suggest a

tetrahedron: two are farther back (lower left and upper right) while two are farther

to the front (upper left and lower right). The back corners are the projections into

xyu-space and xyv-space, and so represent the graphs of the real and imaginary

parts of the function, while the other two corners are projections into xuv- and
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yuv-space, which represent the real and imaginary parts of the inverse relation for

the function. The image at the center of the picture is the view from the center

of the spherical tetrahedron, which represents a combination of the other four, the

most general view of the surface in four-space.

As with the spherical triangle in three-space, the paths along the edges of the

spherical tetrahedron in four-space represent rotations of the surface inside the hy-

percube. This idea is explored more fully in the article “Understanding Complex

Function Graphs” in the prototype issue of the new electronic journal Communica-

tions in Visual Mathematics, which includes interactive methods of navigating the

views from the spherical tetrahedron.

The surfaces shown in the three tetraviews are the complex squaring function

w = z2, the complex cubing function w = z3 and the complex exponential function

w = ez (the latter appears as Color Figure 2). To determine the surfaces in terms

of the four real coordinates, we use the fact that z = x+yi, w = u+vi and i2 = −1.
Then for w = z2 we have w = (x + yi)2 = x2 + 2xyi + y2i2 = x2 − y2 + 2xyi, so

u = x2−y2 and v = 2xy. This gives the graph parametrically as (x, y, x2−y2, 2xy).

The other surfaces are treated similarly.

The images “Z-Squared Necklace” and “Z-Cubed Necklace” also show views of

the complex squaring and cubing functions. The sequence begins with the graph of

the real part of the function (viewed from above, i.e., from the u-axis, so that what

we see is just a disc in the xy-plane) and ending with the graph of the real part of

the inverse relation (viewed from the negative x-axis, so we see a doubly or triply

covered disc in the uv-plane). The intermediate images show views after rotating

the surface in both the the xv- and yu-planes by an angle of θ, for several values of

θ between 0 and 90 degrees. As a projection into 2-space, each view shows a three-

or four-fold symmetry (Figure 6). The on-line gallery provides movies that give the

complete sequence of which the five in each necklace are a part.

Surfaces Beyond
       the Third Dimension

Tom Banchoff and associates

Figure 6: The z-squared necklace as it appeared on the postcard invitation to the
gallery show.
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One way to see the symmetry is to look at the boundary of the unit disc in the

xy-plane. This can be parameterized as (x, y) = (cos t, sin t). Since we have already

seen that the complex squaring function has the graph (x, y, x2−y2, 2xy), the image

of this circle is then (cos t, sin t, cos2 t−sin2 t, 2 cos t sin t) = (cos t, sin t, cos 2t, sin 2t).

Rotating this through an angle of θ in the xv and yu-planes gives
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. (7)

Multiplying the matrices and then taking the orthogonal projection into the xy-

plane gives the curve (x, y) = (cos θ cos t+sin θ sin 2t, cos θ sin t+sin θ cos 2t), which

equals

(x, y) = cos θ(cos t, sin t) + sin θ(sin 2t, cos 2t). (8)

Plotting this curve for a fixed θ reveals that it does indeed have the required 3-

fold symmetry. It is left as an exercise for the reader to verify that this curve is a

hypocycloid formed by a small circle rolling along the inside of a larger circle with

radius three times that of the small circle (thus the three-fold symmetry). The

point that traces the cycloid may be anywhere along the radius of the small circle

(indeed even outside it). In fact, if the radius of the inner circle is normalized to be

of unit length, then the point is at a distance of 2 tan θ from the center of the small

circle.

5. Generating the Computer Images

Despite the fact that good mathematical software exists, the production of high-

quality computer images and movies is still a difficult and time-consuming process.

We used a variety of tools to produce the pictures for the gallery show. The “Torus

Triptych” was generated using a program called fnord developed at Brown Uni-

versity, but not generally available to the public. The “Triple-Point Twist”, “In-

Outside the Torus” and “Math Horizons” images were created by an ancient piece

of custom software for SGI workstations developed by Nick Thompson as an un-

dergraduate at Brown University. Remarkably, it still runs beautifully after more

than 10 years without maintenance. The three images in celebration of Dirk Struik’s

100th birthday were generated at the graphics laboratory at Brown University. The

remaining images were produced using geomview, which is distributed as freeware

by the Geometry Center at 〈http://www.geom.umn.edu/〉, though it runs only on
unix workstations. The MPEG movies that are part of the interactive gallery were

created using geomview and its associated StageTools modules.

The images were produced first as high-resolution TIFF files, but some post-

processing was done after creation (e.g., combining the separate images to form the

necklace and tetraview sequences) with a variety of image tools on both the unix

workstation and on a Macintosh. These tools included the ImageMagick library un-

der unix, and GraphicConverter on the Macintosh. The final results were printed
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as Ilfochrome images at 20 by 24 inches and mounted on foam-core. The images

in “Torus Triptych” were arranged so that the 20 by 24 prints could be cut in half

and joined end-to-end to form 12 by 40 or 10 by 48 panels.

6. Conclusion

It is clear that this electronic gallery faithfully reproduces a great many of the as-

pects of the actual exhibit, while altering the experience in other ways. In some

cases, the electronic version loses information, while in others it provides the oppor-

tunity for significant enhancement, particularly in satisfying the viewer’s curiosity

about the different parts of the mathematics and computer science that made it

possible for us to produce these works. We are grateful for the opportunity to

present our work in a way that will continue long after the physical exhibit has

given way to the work of other artists, and we look forward to further responses

from visitors to our virtual gallery.
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