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In 1960, Nicolaas Kuiper showed that every surface can be

tightly immersed in three-space except for the real projective

plane and the Klein bottle, for which no such immersion ex-

ists, and the real projective plane with one handle, for which

he could find neither a tight example nor a proof that one

does not exist. It was not until more than 30 years later,

in 1992, that François Haab proved that there is no smooth

tight immersion into three-space of the projective plane with

one handle. Haab’s proof is valid only for smooth surfaces,

but it, together with the fact that no polyhedral example had

been found in the preceding 30 years, strongly suggested that

the same would be true of polyhedral surfaces as well. Sur-

prisingly, this is not the case. A tight polyhedral immersion

of the real projective plane with one handle exists, which we

demonstrate in this paper.

1. Introduction

An immersion of a closed surface into three-space is tight provided it has
the two-piece property, meaning that every plane cuts the surface into at
most two pieces (see section 2). Nicolaas Kuiper began a detailed study of
tight immersions of surfaces in the late 1950s, and showed [K1], [K2] that:
(1) every orientable surface admits a tight immersion into three-space; (2)
every non-orientable surface with Euler characteristic strictly less than −1
admits a tight immersion into three-space; (3) the real projective plane,
which has Euler characteristic 1, can not be tightly immersed in three-space;
and (4) the Klein bottle, which has Euler characteristic 0, can not be tightly
immersed in three-space.

Kuiper’s original examples for (1) and (2) were of smooth surfaces, but
it is not hard to modify his constructions to generate polyhedral ones, and
his proof of (3) carries over to the polyhedral case as well. The proof for (4)
needs some modification for polyhedral surfaces, but Kuiper provided this
in [K4]. The smooth and polyhedral results agree for all of these surfaces.

The only surface not accounted for above is the one with Euler charac-
teristic −1, a non-orientable surface formed by adding a handle to the real
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projective plane. Kuiper could not determine whether a tight immersion of
this surface exists or not. The resolution to this issue became a standard
open question in the field.

An important step toward solving this problem was provided in 1992 by
François Haab [H], who proved that there is no smooth tight immersion of
the projective plane with one handle into space. Haab looked at projections
into the plane of immersions in space, and used a counting argument con-
cerning the number of fold curves in a projection of a tight immersion and
the number of different types of saddle points on those curves to break the
surface into regions, two of which contain local maxima for a height function
in some direction. This contradicts tightness, since a plane just below the
lower of these two maxima will cut the surface into three pieces (the two
maxima each in separate components, and the remainder of the surface in
a third).

Haab’s proof relies heavily on the smoothness of the surface, however, so
the question remained open for polyhedral surfaces. In this paper, we resolve
this issue by presenting an example of a tight polyhedral immersion of the
real projective plane with one handle. In light of Haab’s proof, and the fact
that no polyhedral example had been found in the preceding 30 years, the
surface presented below is somewhat unexpected. For a discussion of the
relationship of this surface to Haab’s proof, see [C2]. For a breakdown of
smooth and polyhedral tight surfaces by homotopy classes, see [C1].

2. Tightness for Simplicial Surfaces

In this section, we give the essential definitions and lemmas that we will
need in the following section to demonstrate that the model presented there
is a tight immersion. In section 3, we describe the polyhedral model and
show that it has the desired properties.

By a simplexwise-linear map, we mean a map f : M → R3 from a trian-
gulated surface M into R3 such that the edges and faces of M are mapped
as the convex linear combinations of their vertices. We assume that such
a map is non-degenerate, that is, it does not reduce the dimension of any
simplex of M . Two simplices are said to intersect if their images intersect
other than at a vertex or edge common to both. If σ is a simplex of M , its
star is the collection of all simplices containing σ. In particular, the star of
a vertex v is the union of all edges and faces containing v.

The map f : M → R3 of a simplicial surface M is an embedding if it is a
one-to-one mapping of M into R3, and it is an immersion if it is locally one-
to-one (for smooth surfaces one usually requires additional properties that
guarantee a unique, well-defined tangent plane at every point). A simplicial
surface can fail to be immersed in essentially only two ways: either two faces
with a common vertex intersect (so that no neighborhood of the vertex will
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be mapped one-to-one) or two triangles with a common edge overlap (so no
neighborhood of any point of the edge is mapped one-to-one). The latter,
however, implies that the former occurs at the vertices of the edge, which
gives us the following characterization of immersions:

Lemma 2.1. A simplexwise-linear map f : M → R3 is an immersion if,
and only if the star of every vertex of M is embedded by f .

An immersion f : M → R3 is tight if it has the two-piece property, namely
that the pre-image of every half-space is connected in M [B1], or in other
words, every plane in R3 cuts the surface into at most two parts. (For
some equivalent definitions of tightness, see [BK], [CR1], [K3], [Ku1],
and [K1].) Tightness is closely related to convexity, and in fact it is identical
to convexity for topological spheres. A tight surface need not be convex,
however; for example, a torus of revolution is tight.

Closed convex surfaces have the property that, for almost every direction,
the height function induced on the surface in this direction has a single
maximum and a single minimum; that is, local extrema are also global
extrema. The same is true for closed tight surfaces as well, for if there were
two local maxima for a particular direction, then a plane slightly below the
lower of the two would cut off both maxima, breaking the surface into at
least three parts. For smooth tight surfaces, this means that all the positive
curvature must be on the convex hull of the surface, while all the points
inside the convex hull have negative (or zero) curvature.

A similar geometric interpretation is possible in the polyhedral case as
well. A vertex v of M is called a local extreme vertex if f(v) is a vertex
of the convex hull of the image of the star of v (that is, it is an isolated
local maximum for the height function on f(M) in some direction), and it
is a (global) extreme vertex if f(v) is a vertex of the convex hull of f(M).
A local extreme vertex corresponds to a point of positive curvature in a
smooth surface, while a vertex that lies in the interior of the convex hull
of its neighbors corresponds to a point of negative curvature. Note that v
will not be an extreme vertex (local or global) if it lies in the interior of the
convex hull of some subset of its adjacent vertices; for example, if v lies on
the line segment between two of its neighbors, then v can not be locally or
globally extreme.

With these definitions, we can characterize tightness for simplicial surfaces
as follows:

Lemma 2.2. A simplexwise-linear map f : M → R3 of a closed, compact,
connected surface M is tight if, and only if,

(1) every local extreme vertex is a global extreme vertex,
(2) every edge of the convex hull of f(M) is contained in f(M), and
(3) every vertex of the convex hull of f(M) is the image of a single vertex

of M .
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This lemma can be found in the literature ([BK] or [Ku1], for example) as
a result for embedded surfaces, without the third condition. This condition
is required for immersions, however, as shown by figure 1, which is a sphere
with two points touching. It satisfies (1) and (2), but is not tight since a
horizontal plane just below the upper vertex cuts off two pieces of M at the
top.

This example is a bit contrived, however, since each of the vertices at the
top of figure 1 has more directions for which it is a local maximum than a
global one. In a sense, then, these are not “true” extreme vertices, since the
local and global convex hulls don’t agree, so we might not be surprised that
this example is not tight.

Figure 1. A sphere with two points
touching that satisfies the first two
conditions of lemma 2.2 but not the
third. It is not tight since a horizon-
tal plane just below the upper vertex
cuts M into three pieces.

A more serious example of the need for the third condition is a doubly
covered torus of revolution (that is, a tube that wraps around the torus
twice), or rather its polyhedral equivalent. Although the image of this sur-
face is the same as the corresponding embedded torus, which is tight, the
doubly-covered torus is not tight, since cutting off any patch of the smooth
version or any vertex of the polyhedral one actually cuts off two patches,
separating the surface into at least three parts. It is important to realize
that tightness is a property of the mapping, f , not of its image in space.

3. The Polyhedral Tight Immersion

With these definitions and lemmas, we can now present the tight polyhedral
model of the real projective plane with one handle. The model has 13
vertices; their mapping into three-space is given in figure 2, together with
the 28 faces that make up the surface.

Figure 3 provides a view of this surface; it is broken into two parts, the
central core (a projective plane minus two disks) and the outer handle (that
forms the intersection of the surface with its convex envelope). In these
pictures, the x-axis is parallel to the edge ef while the y-axis is parallel
to fg. The viewpoint is approximately (−30,−10, 60). The surface has self-
intersection, shown in the diagram where faces meet without a heavy black
line. A triple point is visible at the center of the core projective plane.

To verify that this is really the projective plane with one handle, we
compute its Euler characteristic: since there are 13 vertices, 42 edges, and
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Vertices:

a → (−2, 0, 0) h → (0, 3, 2)

b → (0, 0, 0) i → (−3/8, 0, 1/2)

c → (1, 0, 0) j → (1/2, 1/4, 1)

d → (0, 1, 0) k → (−1/4, 7/12, 7/6)

e → (−2,−1, 2) l → (0, 3/4, 7/6)

f → (1,−1, 2) m → (1/4, 0, 1/2)

g → (1, 1, 2)

Faces:

abk bgk bgj bij gfj

adl akl cdl flm clm

hij ehi bci cim fim

efi hkl hjl fjl ghk

abe bef bcf cfg

cgh cdh adh aeh

Figure 2. The positions of the vertices and the triangles
that make up the tight polyhedral immersion of the real pro-
jective plane with one handle.

28 faces, the Euler characteristic is V − E + F = −1, as desired. Another
way to see this is from the triangulation given in figure 4, which shows a
real projective plane (left) with two disks removed (grey) together with a
tube (right) that connects the two holes. The dotted line represents the
pre-image of the self-intersection, called the double set or double locus.
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Figure 3. The tight polyhedral model of the real projective
plane with one handle broken into two parts: the central
projective plane with two disks removed (left) and the tube
forming the handle that makes the surface tight (right).

To see that it is an immersion, we need to check that the star of each
vertex is embedded (lemma 2.1). This can be seen in the triangulation in
figure 4, since the double locus does not contain any vertex. Any immersion
of a surface of odd Euler characteristic is required to have at least one triple
point [B4]; our model has exactly one. A triple point has six arcs of double
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points emanating from it, and in an immersion with only one triple point,
we expect the double curve to connect these arcs in pairs. This is exactly
the behavior we see in the model presented here, where the image of the
double set forms three loops with a single point in common (the triple point
visible in figure 3).
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Figure 4. The triangulation of the projective plane with
one handle; the projective plane (left) has two disks removed
(grey) and the strip (right) has its top and bottom identified
to form a tube whose ends are attached where the disks where
removed.

To check that the model is tight, we must show that all the edges of
the convex hull are contained in the surface itself, and that any vertex that
is not a vertex of the convex hull of the surface lies in the convex hull of
its neighbors (lemma 2.2). First, note that the convex envelope has seven
vertices: a, c, d, e, f , g, and h (although b is on the convex envelope, it is
not a vertex of it) and that the last eight faces listed contain all the edges of
the convex envelope. Of the remaining six vertices, two lie on the straight
line segment between two neighbors (b lies on the segment ac, and k on
the segment ag), two lie within a triangle formed by three neighbors (i lies
within triangle beh, and j within bfg), and two lie inside tetrahedra formed
by four neighbors (l lies within acfh, and m within cfil). Thus the surface
is tight, as claimed.

4. Generating Tight Polyhedral Projective Planes with Handles

The breakdown of the surface presented in section 3 into an inner core and an
outer shell (figure 3) is typical of tight surfaces, and corresponds to having
all the positive curvature (i.e., the local extreme vertices) on the convex
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hull and all the negative curvature (the non-locally extreme vertices) inside
the convex hull. A standard approach to generating tight surfaces is the
following: take some core surface and make as much of it as possible have
negative curvature, then cut off the areas of positive curvature. Place the
result inside a large sphere with a corresponding number of disks removed
and attach negatively curved tubes between these holes and the removed
areas of positive curvature on the original surface. The result is a closed
surface that is the base surface with some handles attached; if carefully
done, it will be tight.

Kuiper used this approach in his search for a tight real projective plane
with one handle. He began by describing the level sets of an immersed
projective plane that has exactly three critical points: one maximum, one
minimum, and one saddle (see figure 5). There must be positive curvature at
the maximum and minimum, but Kuiper hoped to fill in the space between
the remaining levels with pieces of ruled surface (which have zero curvature)
and paste these pieces together by strips having negative curvature. Had
he been able to do this, he would have cut off the top and bottom, and
placed the negatively curved core inside a sphere with two holes removed
(i.e., a tube) to obtain a tight smooth immersion of the projective plane
with one handle.

Figure 5. (After Kuiper [K2]) The
level sets for an immersion of the
real projective plane with only three
critical points (arrows) originally de-
scribed by Kuiper. The polyhedral
model of section 3 is based on these.

Unfortunately, he could not patch the level sets together without intro-
ducing at least one small region of positive curvature (near the tip of the
“tongue” in the 3rd level down from the top of figure 5). By cutting off this
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region and adding a handle out to the enclosing tube, Kuiper did produce a
tight smooth immersion of the real projective plane with two handles [K2].

Kuiper’s presentation of this surface gives a descriptive rather than a
parametric construction, and it would be difficult to carry out in practice.
In [Ku2], however, Kühnel and Pinkall give an explicit polyhedral version of
a tight immersion of the projective plane with two handles. They construct
a polyhedral model of the Boy surface that has all its positive curvature
isolated at three symmetric locations, then cut these off and place the result
inside a large tetrahedron. The result is a tight projective plane with two
handles having an axis of 3-fold rotational symmetry. They also provide
a smoothing algorithm that will produce a tight smooth example of this
surface also having the same symmetry. Their smoothing algorithm does
not apply to all polyhedral models, however, and in particular, the polyhe-
dral surface presented here does not satisfy the conditions that it requires.
(A more detailed analysis of specific configurations within this surface, and
their potential smoothability, can be found in [C2].)
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Figure 6. Selected level sets for the central projective
plane of the tight immersion. The vertices (black dots) are
labeled; the triple point (white dot) is marked.
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The surface in section 3 was found using the plan mapped out by Kuiper:
start with the level sets of figure 5 and fill in, only this time use flat triangular
faces rather than smooth patches. The level sets for the polyhedral core are
shown in figure 6; they bear a striking resemblance to Kuiper’s smooth
ones. Note how the level sets begin large, get small toward the middle and
then get large again at the end, giving the core a “negatively curved” basic
shape (this is reflected in the fact that none of the interior vertices is locally
extreme). Kuiper’s area of positive curvature appeared near our vertex j,
but no positive curvature is introduced in the polyhedral case since j is
not locally extreme. Once the core projective plane with only two areas
of positive curvature was developed, the top and bottom were cut off, and
the remainder of the convex hull was added, as shown in figure 3, thus
completing the surface as a tight polyhedral immersion of the projective
plane with one handle.

5. Conclusion

The polyhedral example described here is significant in that it represents
one of only a handful of low-dimensional examples where the smooth and
polyhedral theories differ in a significant way. The circumstances that pro-
vide for the difference in this specific case still deserve investigation. In
particular, a close study of how this model fails to meet the conditions of
Haab’s paper should provide valuable insight into both the smooth and the
polyhedral situations. A hypertext description of the result presented in this
paper is available at [C3].
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