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1 Introduction

A long-standing open problem in the study of tight surfaces centered around
a question posed by Nicolaas Kuiper asking whether the surface with Euler
characteristic −1 (a real projective plane with one handle) could be tightly
immersed in three-space [8]. Kuiper had established that all other surfaces
admitted tight immersions in space except for the Klein bottle and the real
projective plane, which did not. More than thirty years passed before François
Haab [6] proved that, for smooth surfaces, no such immersion exists. In light of
this result and the failure of the attempts to find a polyhedral counter-example,
it seemed only a matter of time before a corresponding proof would be found for
the polyhedral case as well. Surprisingly, a polyhedral tight immersion of this
surface does exist, as shown recently by the author [4]. Although the smooth and
polyhedral theories differ substantially for surfaces in high-dimensional spaces,
they correspond quite closely in low dimensions; the case of the real projective
plane with one handle is important in that it represents one of only a handful
of low-dimensional examples where the theories differ in a significant way (see
section 3).

In this article, we compare the smooth and polyhedral behaviors of the projective
plane with one handle, and try to illuminate some of the reasons why they differ.
The subject is approached from two different directions: first, we analyze the
polyhedral example in detail, especially the potential smoothability of specific
configurations within it, and find that the obstruction to smoothing this model
is not local in nature. Second, we outline the basic components of Haab’s proof,
and discuss why this proof does not carry over directly to the polyhedral case.
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2 The Polyhedral Tight Immersion

We begin by presenting a tight polyhedral immersion of the real projective plane
with one handle [4]. The model has 13 vertices, and their mapping into space
is given in figure 1 along with the 28 triangular faces, and a view of the surface
from above. The self-intersection can be seen where faces meet without a heavy
black line.

Vertices:

a → (−2, 0, 0)

b → (0, 0, 0)

c → (1, 0, 0)

d → (0, 1, 0)

e → (−2,−1, 2)

f → (1,−1, 2)

g → (1, 1, 2)

h → (0, 3, 2)

i → (−3/8, 0, 1/2)

j → (1/2, 1/4, 1)

k → (−1/4, 7/12, 7/6)

l → (0, 3/4, 7/6)

m → (1/4, 0, 1/2)

Faces:

abk bgk bgj bij gfj
adl akl cdl flm clm
hij ehi bci cim fim
efi hkl hjl fjl ghk

abe bef bcf cfg
cgh cdh adh aeh

Figure 1: The tight polyhedral projective plane with one handle, including its
vertex mapping and face list. The figure is from above, with the x-axis toward
the upper right and the y-axis toward the upper left. Vertex a is toward the
bottom, h the upper left, and f the upper right.

The surface is composed of a central core (an immersed real projective plane
with two disks removed) surrounded by a cylinder formed by removing two disks
from the convex envelope (the surface of the convex hull) of the central core. The
core is based on the projective plane described by Kuiper in [8], where he gave
level sets for an immersed smooth surface with one maximum, one minimum,
and one saddle point. The level sets of the polyhedron given here correspond
closely to those described by Kuiper. In the complete surface, the maxima and
minima are removed and replaced by a tube connecting the top to the bottom
(the outer cylinder). The two curves where the core joins the tube are called
top cycles (for a complete definition and more information about top cycles, see

2



Banchoff and Kühnel, this volume).

Any immersion of a surface of odd Euler characteristic must have a triple
point [1]; this model has exactly one, and it is visible at the center of the
figure. Since the central core is essentially a projective plane with one triple
point, we would expect the double curve to form three loops meeting at the
triple point: six doubly-covered lines emanate from the triple point, and since
in an immersed surface the double locus forms closed curves, these six lines must
be joined pairwise by the double curve, thus forming three loops (see figure 2).
This is indeed the case in our polyhedral model.

Figure 2: A triple point is formed by the intersection of three sheets, where six
arcs of double points (dashed lines) meet. In an immersed projective plane with
only one triple point, these arcs are joined pairwise by the double curve (dotted
lines).

To verify that this is in fact a projective plane with one handle, we compute
its Euler characteristic: the object has 13 vertices, 42 edges, and 28 faces, so
its Euler characteristic is V − E + F = −1 as expected. A polyhedral surface
is immersed if, and only if, the star of each of its vertices is embedded. An
explicit check of the vertices of this model reveals that each star is embedded
(the self-intersection curve does not pass through any vertex), so it is indeed an
immersion.

There are several equivalent definitions of tightness (see Banchoff and Kühnel,
this volume). A geometric one that applies to both smooth and polyhedral
surfaces is that an immersion f :M → R

3 is tight if it has the two-piece property,
namely that the preimage of any half-space is connected in M , or in other words
any plane cuts the surface into at most two parts. For polyhedral surfaces, this
provides a simple characterization of tight immersions (see Banchoff and Kühnel,
lemma 1.4.1):
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Lemma 2.1 A polyhedral immersion is tight if, and only if,

i) The 1-skeleton of the convex hull is contained in the surface,

ii) Every vertex that is not a vertex of the convex hull lies in the relative
interior of some subset of its adjacent vertices, and

iii) The self-intersection set does not include any vertex of the convex hull of
the surface.

The final condition is required for immersions since such a vertex could be cut
off, thereby dividing the surface into at least three pieces (two copies of the
vertex, plus the rest of the surface).

We can use this lemma to check that the polyhedron given above is, in fact, tight:
first, note that the convex envelope has seven vertices: a, c, d, e, f , g, and h
(although b is on the convex envelope, it is not a vertex of it) and that the last
eight faces listed contain all the edges of the convex envelope. Of the remaining
six vertices, two lie on the straight line segment between two neighbors (b lies on
the segment ac, and k on the segment ag), two lie within a triangle formed by
three neighbors (i lies within triangle beh, and j within bfg), and two lie inside
tetrahedra formed by four neighbors (l lies within acfh, and m within cfil).
Thus the surface is tight, as claimed.

3 Tight Smoothings of Polyhedral Surfaces

In the previous section we presented a tight polyhedral model of the real pro-
jective plane with one handle, and Haab [6] provided a proof that no smooth
immersion of this surface exists. An important question to ask is: Why can’t
this polyhedral model be smoothed tightly? Given a polyhedral surface, a tight
smoothing is a tight smooth surface of the same topological type lying within
an ε-neighborhood of the polyhedron, for some small ε. Frequently, there exists
such a surface for arbitrary ε and these form a continuous deformation from the
polyhedral to the smooth surface that is tight at every step. Such a deformation
need not always exist, however. For example, in 5-space, there are essentially
only two substantially embedded tight immersions of the projective plane: the
Veronese surface (a smooth embedding), and the canonical embedding of the
6-vertex polyhedral real projective plane (see Banchoff and Kühnel, theorem
1.3.6 and corollary 1.4.12, this volume). In one sense, the Veronese surface is
the obvious tight smoothing of the polyhedral projective plane, but there is no
continuous deformation by tight surfaces from one to the other, since no in-
termediate tight surfaces exist. Although no examples like this are known in
3-space, we will not require a deformation by tight surfaces for our purposes,
but only a smooth tight surface sufficiently near the polyhedral one.
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One feature that might interfere with smoothability would be the presence of
“exotic” saddle points. These are saddles where there is no direction for which
the orthogonal projection of a neighborhood of the saddle is one-to-one (fig-
ure 3). Such a saddle is not possible in a smooth surface, since the implicit
function theorem guarantees that such a direction always exists. Exotic saddles
play a crucial role in one of the few other low-dimensional examples of a differ-
ence between the smooth and polyhedral theories, namely the existence of an
embedded polyhedral torus with a height function having exactly three critical
points, but no such smooth embedding [2]. Taking our cue from this, we look for
exotic saddles in the polyhedral surface given in section 2. Checking each of its
vertices, however, we find that it contains no exotic saddles, since every vertex
has a direction where the orthogonal projection of its star in that direction is a
one-to-one mapping.

Figure 3: A polyhedral monkey saddle of the “exotic” type. There is no direction
for which the orthogonal projection is a one-to-one mapping.

A second feature that might interfere with smoothability would be vertices that
are not “generic” enough, i.e., ones that can not be perturbed without destroying
tightness. For example, vertex k lies on the boundary of the convex hull of its
neighbors (it is on the segment ag), and if it were raised in the z direction
(for example) it no longer would be in the relative interior of any subset of its
neighbors, and the model would fail to be tight (see lemma 2.1). Vertex b has
a similar problem, and vertices i and j, which lie on faces of the convex hulls
of their neighbors, have directions in which they can not be perturbed without
losing tightness. The basic observation is that if a vertex lies on the convex
envelope of its neighbors, then it can not be perturbed in some directions, nor
can some of its neighbors, without losing tightness. On the other hand, if a
vertex lies in the strict interior of the convex hull of its neighbors, then it can
be moved slightly in all directions, and so can its neighbors, without destroying
tightness at that vertex. Ideally, then, we would like the model to be in general
position (i.e., no three vertices lie on a line, and no four vertices lie in a plane).

It is possible to move vertices i, j, and k slightly so that they do lie in the
interior of the convex hull of their neighbors while maintaining the tightness
of the model (move i in the positive x direction, j in the negative x direction,
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and k in the negative z direction slightly). Since b lies on the convex envelope
of the surface, it must be treated with a bit more care. The solution in this
case is to move b in the negative y direction; this makes it a vertex of the
convex hull of the surface, and so condition ii of lemma 2.1 no longer applies.
Once this is done, the vertices that form the convex hull of the surface also
can be perturbed, provided they stay within the planes of the top cycles to
which they belong. Thus all the vertices of the model can be “jiggled” slightly
without losing tightness. This is not quite general position, however, since the
top cycles must remain in a plane; but these planes can be jiggled slightly as
well, provided that all the vertices in the plane are moved together. We will call
this nearly-general position.

One may ask whether the model can be put into truly general position, and
indeed it can. The crucial condition is that, to be in general position, the top
cycles must be triangular since each top cycle must lie in a plane. The top
cycles in this model are formed by quadrilaterals; however, the polyhedron can
be modified so that its top cycles are triangular. One way to do this is to remove
the convex envelope (leaving only the core) and then place large triangles in the
planes of the top cycles so that the top cycles lie inside them. Triangulate the
annular regions between each triangle and the top cycle contained within it,
then move each triangle slightly in the direction perpendicular to its plane but
away from the central core (the annular region will become a funnel-shaped
“flange”). Finally, add a new cylinder connecting the two large triangles, to
replace the convex envelope that was removed at the outset. Provided the new
triangles are large enough and the distance they were moved is small enough,
the resulting surface will be a tight immersion of the real projective plane with
one handle, and its top cycles will be triangular. The vertices that previously
formed the top cycles will now be inside the convex hull of the surface, and can
be moved slightly to put the entire surface into general position.

Once in general position, every vertex can be perturbed slightly without dam-
aging tightness, including those that form the top cycles. Note that this is in
sharp contrast to the smooth situation, where the top cycles are less stable:
small changes to a top cycle can easily destroy tightness.

We have seen that the model presented in section 2 is not initially in general or
even nearly-general position. The reason for this is two-fold: first, it shows that
such unusual configurations are possible and not just contrived, and second, it
makes checking tightness simpler, since it is easier to check that a vertex lies on
a line segment or in a plane than it is too see that it lies inside a tetrahedron.
It is important to note, however, that the presence of such configurations is not
an obstacle to smoothing the polyhedral surface, since the surface can be put
into nearly-general position with only minor adjustments, or general position
with more extensive changes, without losing tightness.

For additional features that might interfere with smoothability, we turn to an
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algorithm developed by Kühnel and Pinkall in [7] that will smooth a tight poly-
hedral immersion to produce a tight smooth immersion of the same surface that
agrees with the polyhedron everywhere but in an ε-neighborhood of the edges.
The algorithm does not apply to all polyhedra, however, but only to ones with
certain properties, and the conditions that the polyhedral surface must meet
are rather strict. Given a vertex of a polyhedral immersion, consider a small
sphere centered at the vertex; its intersection with the surface forms a spherical
polygon, and a neighborhood of the vertex is the cone over such a polygon. If
this cone is convex, then the vertex is called convex. A vertex is a standard
saddle provided that: i) it is 4-valent, ii) all the angles of the faces at the vertex
are strictly less than π, and iii) there are no local support planes through the
vertex.

The conditions of the smoothing algorithm require that the non-convex vertices
of the surface be either 3-valent or standard saddles. In particular, no vertex
interior to the convex hull can be more than 4-valent, and all the vertices that lie
on the convex envelope either must be convex or as simple as possible, i.e., only
3-valent. On the other hand, the algorithm also allows non-triangular faces, and
indeed, non-convex and even non-simply-connected faces, so these restrictions
aren’t so severe as they at first appear.

The polyhedral model presented in the previous section does not satisfy these
conditions, nor can it be modified to satisfy them, otherwise its smoothing would
represent a counter-example to Haab’s theorem. This leads us to ask: Which
vertices cause trouble, and what is the obstruction to smoothing them? All the
vertices except m fail the valence conditions, and vertices b, k, i, and j have
facets with angles of π or greater (note: co-planar faces that share an edge form
a single facet, so abk and kbg form one facet abgk which has an angle of π at
k since k lies on the segment between a and g). The latter problem can be
resolved by putting the vertices into nearly-general position as discussed above,
since then all the interior facets are triangles, and so have angles strictly less
than π. The remaining difficulty is the large number of edges at each vertex.

One approach to the valence problem is to try to split up a vertex of high valence
into several vertices of lesser valence. The trick is to do it while still maintaining
tightness. Since the model is in nearly-general position, if the new vertices all
are in a small neighborhood of the original vertex, this will not disrupt the
tightness at its neighbors, so it is only necessary to check that the new vertices
satisfy condition ii of lemma 2.1.

As an example, consider vertex a, a vertex of the convex hull of the surface
that is non-convex and 7-valent. It can be broken into three vertices, as shown
in figure 4. One of these, a1, is convex, and the other two, a2 and a3, are 3-
valent. Note that the introduction of non-triangular faces is allowed, and indeed
is crucial to obtaining the correct valences at a2 and a3. This modification
maintains tightness, since a1 is now a vertex of the convex hull, while a2 and
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a
a1

a2a2
a3a3

Figure 4: The non-convex vertex a can be broken into three vertices, one convex,
the other two 3-valent, all lying in the plane of the top cycle containing a.

a3 are in the relative interiors of their neighbors (a2 is interior to the triangle
formed by a1, a3 and the vertex to the left of the original vertex a, while a3 is
interior to a1, a2 and the vertex to the right of a).

f

Figure 5: The non-convex vertex f can be broken into five vertices, one convex,
two 3-valent, and the other two standard saddles.

We will call a vertex locally smoothable if it can be replaced by a collection of
new vertices such that the resulting polyhedral model is still tight, and all the
new vertices satisfy the smoothing criterion of Kühnel and Pinkall. Thus vertex
a is locally smoothable. Vertices c, d and e likewise are locally smoothable using
a similar decomposition. A local smoothing configuration for vertex f is given
in figure 5. Again, non-triangular faces are crucial to the construction, and care
must be taken at the 4-valent vertices to assure that the angles are less than π.
Vertex g can be handled similarly.

Vertex b presents a more difficult challenge. It can be modified as shown in
figure 6. Here, rather than pushing b outward so that it becomes a vertex of the
convex envelope, we pull it into the interior and subdivide it. It is important
that b1, b2, b3 and g lie in a plane, with the angle at b3 less than π. Vertex
b1 should be placed on the back side of the plane containing a, c and g, while
b2 and b3 should be placed in the interior of the tetrahedron b1gij. A similar,
though slightly more complex, construction is possible at vertex h.

Vertices i and k are interior to the convex hull and are 5-valent; they can be
treated in much the same way that b was above. Vertex m already satisfies the
smoothing conditions. Vertex j can be split into two vertices, one 5-valent, the
other 4-valent (figure 7, middle) provided j1, j2, b and g are co-planar; j1 can
then be split in a way similar to how b was modified above (figure 7, right). An

8



j

g

a m

c

i

b

k

k
j

g

a m

c

i

b

c

j

g

a m

i

b1

b3

b2

k

Figure 6: Vertex b can be pulled into the interior of the convex hull (middle)
and then split into three vertices (right), all of which are standard saddles.

extra vertex j5 is added between j2 and h to divert from j2 an edge generated
while subdividing j1. This requires j1, j2, j3 and j5 to be co-planar, as well as
j1, j3, j4, and f . One can arrange that these planarity conditions are satisfied
while still placing each new vertex in the interior of the tetrahedron formed by
its four neighbors. Thus j is locally smoothable. Finally, l can be split into two
5-valent vertices that can be handled in a similar fashion.
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Figure 7: The 6-valent vertex j can be broken into two vertices (middle), one a
standard saddle, the other 5-valent; the latter can in turn be broken into three
standard saddles (right). An extra vertex is added near j2 in order to divert an
edge that would have increased the valence of j2.

We see, then, that every vertex of the polyhedral model is locally smoothable;
but this does not mean that the model itself is smoothable. The reason is
that we can not carry out all the modifications described above simultaneously
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without them interfering with each other. For example, the modification to b
adds edges to a and c, which will disrupt the carefully-planned valence config-
urations at those vertices. Some coordination among these modifications may
be possible, however. For example, two new edges generated at neighboring
vertices may form triangles that can be combined into a single planar quadrilat-
eral, thus maintaining the proper valence at each vertex (the author currently
is investigating such possibilities).

Although we can not carry out all the modifications concurrently, the fact that
each vertex is locally smoothable has an important implication, namely that
the obstruction to smoothing this polyhedral surface is not a local one, iso-
lated at some unusual vertex (since neighborhoods of all the vertices look like
smoothable patches that could become part of a smooth tight surface). Rather
the obstruction is a global one, intrinsic to the surface itself. What this global
property is remains an open question at this point.

4 Haab’s Proof for Smooth Surfaces

Haab’s proof [6] of the fact that there is no smooth immersion of the real projec-
tive plane with one handle requires considerable machinery, of which we outline
some of the highlights.

His basic idea is to consider mappings of surfaces into the plane, and to deter-
mine when these can be “factored” into an immersion of the surface in space
followed by a projection into the plane. One of the important features of such
projections are their fold curves. For smooth surfaces, the fold curves for almost
all projections are formed by a collection of images of circles that are smooth
immersions except at a finite number of cuspidal points.

The fold curves for tight immersions have a specific geometric form: one compo-
nent is convex, and the others are locally concave (with respect to the image of
the projected surface) and contain all the cusps (see figure 8). Haab computes
strict bounds on the number of components that can exist in the fold set for
a tight immersion of a given surface. He defines a degree on each of the fold
curves, and shows that it is 2 for the convex component, and strictly negative
for the others, and that moreover, the sum of the absolute values of the degrees
is equal to 4 minus the Euler characteristic of the surface. This provides a key
connection between the fold curves and tightness.

Haab then considers height functions on surfaces with boundary and classifies
their saddle points according to whether passing the saddle point changes the
number of components in the level set of the height function. He uses a gener-
alization of the Morse inequalities to show that the number of saddles that do
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Figure 8: (after Haab, [6]). The fold curves for a tight immersion of the surface
with Euler characteristic −3. The saddles that change the number of compo-
nents in the level set are shown by dashed lines, and those that don’t are shown
by dotted lines. Note that the type of saddle changes only at points where there
is a doubly-tangent line to the fold set.

not change the number of components is equivalent mod 2 to the genus of the
surface. This allows him to prove an actual bound (in terms of the genus of
the surface) on the number of such saddle points for any height function. Haab
then considers the fold sets of projections of tight surfaces, and determines that
the type of saddle that occurs (for height functions in directions perpendicular
to the direction of projection) on the fold set for a given projection can change
only at points where the tangent line to the fold curve is tangent to the fold set
at more than one point (see figure 8).

He applies this information to the case of the projective plane with one handle,
and concludes that, for a tight immersion, the type of saddle is constant on each
component of the fold set, and that the fold set has exactly three components.
He uses the fold curves and the top cycles to decompose the surface into disjoint
regions, and shows that one of these contains a cycle that separates it, but
on which the Gauss map is constant. He considers a height function in the
direction of the Gauss map, and, after showing that the curve bounds a region
on which the Gauss map is not constant, deduces that the height function has
a local extremum inside that region. The initial decomposition of the surface
into regions ensures that this point is not a global extremum for the height
function, which contradicts the fact that the immersion is tight, since a plane
perpendicular to the direction of the height function and just below the lower
extremum will cut the surface into three disjoint pieces.
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5 Some Differences between the Smooth and

Polyhedral Theories

Haab relies heavily on the smoothness of the surface in his proof, but not all of
his results carry over to the polyhedral situation. There are several important
differences that arise in the polyhedral case.

First, for smooth surfaces, the fold curves of almost all projections form disjoint
components, so it is possible to count the number of components accurately. In
the polyhedral case, the analogue of the fold curves are formed by fold edges
(ones where the two triangles sharing that edge both project onto the same side
of the edge), but an arbitrarily large number of fold edges may come together
at a single vertex of a polyhedral surface. Thus it is not always possible to
determine a canonical way to divide the fold edges into fold curves, and the
number of components may change with different divisions into curves. In the
polyhedral model presented here the projection onto the xy-plane has either
one or two components (see figure 9) depending on how the choice is made at
vertex h where four fold edges meet. This is not the three predicted by Haab
for the smooth case, so already a difference has emerged between the two types
of surfaces. (It is interesting to note that the conditions of Kühnel and Pinkall’s
smoothing algorithm [7] guarantee that there are at most two fold edges at each
vertex, so for these polyhedra, the fold curves can be separated into components
without ambiguity.)

Figure 9: The fold curves for two projections of the tight polyhedral projective
plane with a handle; each can be broken into fold curves in more than one way.
The projection onto the xy plane (left) can be broken into one or two components
depending on the decision made at the topmost vertex, h. The other projection
(right) can be broken into as many as six components; it has three interior
vertices where more than two fold edges meet. There are projections for which
the fold curves are even more complicated.

Second, the idea of a cusp and of locally convex curves is harder to formulate
in the polyhedral case. One might begin by identifying analogous polyhedral
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structures, such as those shown in figure 10, but this becomes more complicated
when more than two fold edges meet at one vertex.

Figure 10: Polyhedral analogues of the fold and cusp (left). The neighborhood
of a vertex can wrap around the vertex an arbitrary number of times (right),
though only a single revolution is shown here. The fold edges themselves do not
contain enough information to distinguish between the two folds shown.

The problem is compounded by the fact that a star can wind around a vertex an
arbitrary number of times with no visible effect on the angle between the fold
edges. This makes computing the degree of a fold curve more complicated than
in the smooth case (where small loops would be present). In the polyhedral case,
the fold curve itself does not contain enough information to distinguish between
the two situations shown in figure 10, so any analog of Haab’s fold-curve degree
would have to be more complex, and would probably involve looking at the strip
neighborhoods of the fold curves. (Again, note that the conditions of Kühnel
and Pinkall’s smoothing algorithm do not allow for such aberrant behavior.)

For smooth tight surfaces, almost every point of the (non-convex) fold curves
is a saddle for some direction, but this is no longer the case for polyhedral
surfaces, where only vertices can be saddles. Moreover, these saddles can easily
be of higher degree (i.e., monkey saddles or worse), and can be the exotic type
that have no smooth counterpart (figure 3). Such saddles are stable under small
changes of direction, which is not the case for smooth surfaces. This complicates
the issue of determining the “type” of each saddle, and thus the type of each
fold component, which is crucial to Haab’s argument. Haab’s results concerning
when the type of a fold curve can change would require additional work in the
polyhedral case, since the idea of bitangent lines to the fold curves does not
have a direct analog.

Finally, Haab uses the fact that the top cycles in a smooth tight immersion
lie in distinct planes to break the central projective plane into regions, one of
which is an annulus. In the polyhedral case, the top cycles can share vertices
or even edges, making such a decomposition harder to formulate. For example,
the Császár torus [5], which is tight, has two triangular top cycles that share a
vertex. To generate an example where the top cycles share edges, begin with
a hexagonal prism and remove every other rectangular face. Place the prism
within a large triangular prism whose faces are parallel to the ones removed from
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Figure 11: A surface with three top cycles that share edges in pairs.

the hexagonal prism. Finally, replace each rectangular face of the triangular
prism with four trapezoidal faces that connect its boundary to the boundary of
the corresponding removed face of the hexagonal prism. The resulting embedded
surface is tight (see figure 11); it has three rectangular top cycles (the boundaries
of the rectangular faces of the outer prism) which share edges in pairs: each edge
joining the top and bottom triangles of the prism belongs to two distinct top
cycles.

6 Conclusion

The existence of a tight polyhedral immersion of the real projective plane with
one handle, but no smooth one, provides a unique opportunity to study some of
the details of how these two types of surfaces differ even in low dimensions. One
question that remains is how unique is this situation? Are there other tight
polyhedral immersions of surfaces that can not be tightly smoothed? In [3],
the author presents several tight polyhedral immersions to which Kühnel and
Pinkall’s smoothing algorithm does not apply, and for which no corresponding
smooth tight immersion is known; are these models also examples of this same
phenomena? Or is there a more general smoothing algorithm that will handle
these cases? The example presented here shows that no smoothing algorithm
will work for every tight polyhedral surface, and an understanding of just why
that is so should provide insight into both the smooth and polyhedral worlds.
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