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Abstract

Although the Klein bottle can not be embedded in R3, it can be immersed
there, and in more than one way. Smooth examples of these immersions have
been studied extensively, but little is known about their simplicial versions. The
vertices of a triangulation play a crucial role in understanding immersions, so it
is reasonable to ask: How few vertices are required to immerse the Klein bottle
in R3? Several examples that use only nine vertices are given in section 3, and
since any triangulation of the Klein bottle must have at least eight vertices, the
question becomes: Can the Klein bottle be immersed in R3 using only eight
vertices? In this paper, we show that, in fact, eight is not enough, nine are
required. The proof consists of three parts: first exhibiting examples of 9-vertex
immersions; second determining all possible 8-vertex triangulations of K2; and
third showing that none of these can be immersed in R3.

1. Introduction

Smooth embeddings and immersions of surfaces have been studied extensively, but their
simplicial counterparts are not so well understood. Two important questions concerning
simplicial surfaces are: what is the minimum number of vertices required to triangulate
the surface; and what is the minimum number of vertices needed to produce an embedding
or an immersion of the surface into Euclidean space?

For the sphere, the answer to both questions is four: a tetrahedron is a triangulation
of the sphere using only four vertices, and it can be embedded in R3. For a torus, the
minimum needed for a triangulation can be shown to be seven (see section 4), and a
somewhat surprizing fact is that this triangulation also can be embedded in R3 using
straight edges and planar faces [9]. For a Möbius band, five vertices are needed for a
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triangulation, and such a triangulation can be embedded easily in R3. On the other hand,
the real projective-plane (a Möbius band with a disk attached along its boundary) is a
closed, non-orientable surface, so it can not be embedded in R3; but it is possible to find
immersions (that is, maps that are locally one-to-one) of the projective plane. Banchoff
showed [2] that the number of triple points of an immersion is congruent, modulo 2, to
the Euler Characteristic χ of the surface, so any immersion of RP2 must have at least one
triple point, since χ(RP2) = 1. In a triangulation, this means that three distinct faces
must intersect, and these faces can have no vertices in common by lemma 2.1; thus at
least nine vertices are needed to immerse RP2. In fact, no additional vertices are needed,
and Brehm [7] gives explicit instructions for producing 9-vertex immersions of RP2. The
projective plane can be triangulated using only six vertices [11], so this provides an example
where an immersion requires more vertices than the minimal triangulation.

For the Klein bottle, K2, any triangulation requires at least 8 vertices (see section 4), and
we are led to ask: how many vertices are required for an immersion of K2 into R3? We can
not use the triple-point argument as we did with the projective plane, since χ(K2) = 0;
indeed, immersions of K2 with no triple points are easy to find. On the other hand,
9-vertex immersions of K2 exist (some are given in section 3), so we have the following:

Theorem 1.1 K2 can be immersed in R3 using nine vertices.

In fact, there are two significantly different types of immersions of K2 (one can not be
continuously deformed into the other while maintaining an immersion at every step). We
give 9-vertex examples of both classes, proving:

Theorem 1.2 Both classes of immersions of K2 can be achieved with nine vertices.

The question becomes, then, are there any 8-vertex immersions? To answer this, we first
enumerate all possible 8-vertex triangulations of K2. For the sphere, torus, Möbius band,
and real projective-plane, the minimal triangulations are unique and equivelar (the vertex
stars are the same at every vertex). This is not the case for the Klein bottle: in section 5
we show that there are exactly six combinatorially-distinct 8-vertex triangulations of K2.
Finally, in section 6 we use combinatorial and geometric means to show that none of these
can be immersed in R3. This, together with our examples from section 3, proves:

Theorem 1.3 Any immersion of a triangulation of K2 into R3 has at least nine vertices.

The author gratefully acknowledges the assistance provided by Thomas Banchoff through-
out the development of this paper. From the initial discussions which sparked my interest
in the subject and clarified the questions involved, to the final stages of writing, he has
been supportive, encouraging, and an important source of information and ideas. The au-
thor also wishes to thank Ulrich Brehm for his kind correspondence and helpful comments
and suggestions, particularly during the early stages of writing.
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2. Definitions

By a simplexwise-linear map, we mean a map f :M 2 → R3 from a triangulated sur-
face M2 to R3 such that the edges and faces of M 2 are mapped as the convex linear
combinations of their vertices. This corresponds directly with our intuitive concept of a
triangulated manifold in R3. The map f is non-degenerate if it does not reduce the
dimension of any simplex of M 2. That is, no edge of M 2 maps to a single point in R3,
and no triangle in M2 becomes an edge or a point in R3. Two simplices of M2 are said to
intersect if their images intersect (other than at a common vertex or edge).

The map f is an embedding if it is a one-to-one mapping of M 2 into R3. It is an
immersion if it is locally one-to-one; that is, for each point p ∈ M 2 there is an open
neighborhood U of p such that f |

U
is an embedding. In any mapping, a point p with

such a neighborhood is said to be immersed while one failing to have this property is
non-immersed.

The double-set, D(f) is the set of self-intersection for f(M); that is,

D(f) = { p ∈M | there exists q ∈M , q 6= p, with f(p) = f(q) }.

We will refer to the image of the double-set as the double-curve of the immersion.

If f is a non-degenerate simplexwise-linear map, then each face is mapped one-to-one by f ,
hence the interiors of faces always are immersed. Since the map is linear and triangles are
convex, if two triangles with a common vertex intersect, they do so in every neighborhood
of the vertex, hence a vertex is immersed if and only of none of the triangles containing it
intersect. Finally, if the vertices of an edge are immersed, then the two triangles sharing
that edge can not intersect, so their union is mapped one-to-one; since the interior of the
edge lies in the interior of this union, the interior of the edge will be immersed whenever
the vertices are. Thus we have the following:

Lemma 2.1 A non-degenerate simplexwise-linear map f :M 2 → R3 is an immersion if

and only if no two faces of M 2 with a common vertex intersect in R3.

A simplicial map φ from a triangulated surface M 2 to itself is a symmetry of the tri-
angulation if it is a one-to-one, onto mapping that preserves the dimension of simplicies;
that is, φ is a one-to-one linear map taking vertices to vertices, edges to edges, and faces
to faces. Since edges and faces are determined by their vertices, any such φ is completely
determined by its action on the vertices ofM 2; thus φ can be represented as a permutation
of the vertices of M2.

Two maps f, g:M2 → R3 are equivalent if there is a symmetry φ:M 2 → M2 of the
surface such that f = g ◦ φ. Since permutations are invertible, it is clear that this forms
an equivalence relation, so when we speak of an immersion f :M 2 → R3 we will mean its
equivalence class under this relation.
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Two immersions f, g:M 2 → R3 are image homotopic if there exists a continuous map
F :M2 × [0, 1] → R3 such that F (p, 0) = f(p) and F (p, 1) = g(p) for all p ∈ M 2, and
such that Ft(p) = F (p, t) is an immersion for each t ∈ [0, 1]. Image homotopy also defines
an equivalence relation on the set of immersions of M 2; Pinkall [12] gives a complete
classification of the equivalence classes of immersions under image homotopy.

Figure 2.1: The two distinct immersions of the Klein bottle: the “tube-through-a-tube”
(left) and the “twisted figure-8 tube” (right).

In particular, for the Klein bottle there are three classes: the familiar “tube-through-a-
tube” (figure 2.1), and left- and right-handed versions of the less-familiar “twisted figure-8
tube” (figure 2.1). Since the latter two are identical via a reflection, any realization of
one immediately yields a realization of the other, so we will consider only the two classes
shown in the diagram. Note that each class exhibits a symmetry: for the first class it
is a reflective symmetry about a plane, and for the other, it is a rotational symmetry of
order 2.

3. Some 9-Vertex Immersions

We prove in section 6 that no 8-vertex immersion ofK2 into R3 exists, but first we produce
immersions using nine vertices. There are two basic approaches to creating immersed poly-
hedral surfaces: either start with an arbitrary (non-immersed) mapping and move or add
vertices until it becomes immersed, or start with a many-vertex immersion and remove or
identify vertices in such a way that the map remains immersed. Both these approaches are
aided by computer-graphic analysis. A three-dimensional modelling program is nearly in-
dispensable for this kind of work; indeed, the models described below were created initially
on a graphics workstation.

We can achieve a symmetric version of the usual immersion of the Klein bottle by approach-
ing the problem from a topological viewpoint. The essential feature of this immersion is
the self-intersection, which is formed by a tube passing through the side of the surface.
Simplicially, we can model this by a triangular tube through a face: the tube requires six
vertices while the face has three, so we have a total of nine vertices already.
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Placing vertices symmetrically is easy; the trick is to add additional triangles that complete
the surface as a Klein bottle without causing additional self-intersections. To do so, we
deform the tube by tilting one of the openings so that both openings face in the same
general direction (figure 3.1). It then is possible to add triangles that close up the surface
into a Klein bottle, as shown.
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Figure 3.1: A tube through a face (left) can be deformed (center) so that the openings no longer
point away from each other. Additional triangles (right) can be added to complete a 9-vertex
Klein bottle.

Geometrically, this immersion has a reflective symmetry that induces the permutation
(AB)(EF )(GH) of the vertices; but this is not a symmetry of the triangualtion since it
maps the edge EH to the edge FG, which does not appear in the triangulation. Note,
however, that the triangles EFH and EGH lie in a plane and form a symmetric convex
quadrilateral in R3, so if we join the two by “erasing” the edge EH in the triangulation,
we have a polyhedral decomposion of the Klein bottle containing a quadrilateral EFHG
instead of the triangles EFH and EGH. To indicate this, the edge EH is shaded in
figure 3.2. Furthermore, this decomposition exhibits the desired reflective symmetry.
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Figure 3.2: A symmetric 9-vertex immersion of the Klein bottle. The self-intersection is shown by
dotted lines; the shaded line is the diagonal of a symmetric planar quadralateral in the immersion.

Additional views of this immersion are shown in figure 3.3, in which the figure is rotated
about its vetical axis. Compare this version to the one shown in figure 2.1.
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Figure 3.3: Three additional views of the immersion shown in figure 3.2

A representative of the second type of immersion can be generated by taking a figure-8

and moving it through space to form a tube, then attaching the ends of the tube so that

the top of one end matches the bottom of the other. Another way to view this is to

move the figure-8 around a circle while rotating it by 180 degrees. Modelling this directly

by a polyhedral figure-8, which takes four vertices, and placing a copy of this figure-8 at

each corner of a triangle gives a total of twelve vertices. If the figure-8 is rotated by 60

degrees at each corner and we attach corresponding vertices from one figure-8 to the next,

a polyhedral model using only twelve vertices can be built (figure 3.4).
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Figure 3.4: A 12-vertex example of the “figure-8 tube” immersion class. The two Möbius bands
are shaded in the triangulation.

If we consider only a small neighborhood of the crossing point of the figure-8 as it moves

around the circle, each of the two line segments that cross sweeps out a Möbius band, so

we get two Möbius bands that intersect along a circle in their interiors. Since a polyhedral

Möbius band must have at least five vertices, this would lead us to assume that at least ten

vertices should be required to create this figure. The number of vertices can be reduced,

however, by allowing the Möbius bands to share a vertex, as in figure 3.5, giving a total of

nine vertices.
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Figure 3.5: Two 5-vertex Möbius bands (left) can be combined so that they have
a vertex in common, but still are immersed (right).

Once this figure is produced, it is an easy matter to attach the additional triangles that
come from the top and bottom of the figure-8, producing the Klein bottle represented in
figure 3.6. One would expect that these triangles form a single strip, as they do with
the 12-vertex model described above; since two points of the Möbius bands have been
identified, however, this “pinches” the strip, so that it becomes a disk with two boundary
points identified. The two Möbius bands and the pinched strip are clearly visible in the
triangulation depicted in the figure.
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Figure 3.6: A 9-vertex example of the “figure-8 tube” immersion class. The two Möbius bands are
shaded in the triangulation.

This final immersion is interesting in a number of ways. First, the mapping does not exhibit
the expected “hole” that is present in the smooth case and in the 12-vertex version: the
hole has collapsed completely to form the central vertex I (in fact, if we consider the
12-vertex model and identify the points A2 with B2, A4 with C1, and then B2 with C1,
and move the vertices A1 and A3 apart somewhat, we achieve (essentially) the 9-vertex
immersion of figure 3.6. These identifications collapse the hole to a single point).

Second, the star of the central vertex I forms a “monkey saddle”; moreover, this is not the
standard monkey saddle, but the polyhedral exotic monkey saddle (figure 3.7) that can not
be smoothed without breaking it into two standard saddles [3]. This allows the immersion
to have a height function with exactly three critical points rather than the usual four, for
example.
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Figure 3.7: The polyhedral monkey saddle at the center of the 9-vertex Klein
bottle of figure 3.6, as viewed from the top (left) and front (right).

Finally, although we were unable to produce a 9-vertex triangulation of the standard
immersion with true reflective symmetry, this model does exhibit the expected rotational
symmetry (around the y-axis). The triangulation itself has additional symmetries, but
none of these can be realized in R3.

4. A Klein Bottle Requires at least Eight Vertices

We have just seen a number of 9-vertex (or more) Klein bottles, and our success in pro-
ducing them may prompt us to believe that 8-vertex immersions also exist. This is not
the case, as we will see in section 6. In order to prove this, however, we need to know
something about what Klein bottles with fewer vertices look like. Our first task is to show
that any triangulation of the Klein bottle requires at least eight vertices.

Our main tool will be the Euler formula which relates the number of vertices, edges, and
faces of a simplicial complex: χ(M2) = V − E + F

where V is the number of vertices, E the number of edges, and F the number of faces in
the triangulation, and χ(M2) is the Euler characteristic of M 2, a topological invariant.
In a triangulation of a closed surface, we also have 2E = 3F , since each face has exactly
three edges, while each edge is on the border of exactly two faces; so χ = V − E/3, or
E = 3(V −χ). On the other hand, if there are V vertices, there can be at most

(

V
2

)

edges in

M2, so E ≤
(

V
2

)

= V (V − 1)/2. Combining these yields the inequality V 2 − 7V + 6χ ≥ 0.
Using the quadratic equation and noting that V must be positive and greater than 3, we
find

V ≥ 7 +
√
49− 24χ

2
.

If M is the sphere, for example, χ = 2, so V ≥ 4, and since a tetrahedron realizes the
sphere with only four vertices, we have confirmed our intuition that four is the minimum
number of vertices for a triangulation of the sphere. For the torus, χ = 0, so V ≥ 7, and
we need at least seven vertices; but a triangulation of the torus exists using only seven
vertices [9,11], so we see that seven is the minimum triangulation number for the torus.
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The projective plane has χ = 1, so V ≥ 6, and since a 6-vertex triangulation of RP2

exists [11], this shows that six is the minimum triangulation number for the projective
plane.

What about the Klein bottle? In this case, χ(K2) = 0, so V ≥ 7, but there are no 7-vertex
triangulations of the Klein bottle. To see this, first note that if there were only seven
vertices, then there would have to be 3(7 − 0) = 21 edges, by the Euler formula; but
(

7
2

)

= 7 · 6/2 = 21, so the triangulation would include all possible edges. Thus each vertex
would have to be connected to every other vertex. A coloring of the vertices of such a
triangulation would require seven colors, but Franklin [10,8] proved that any graph on the
Klein bottle requires no more than six colors, hence a 7-vertex Klein bottle is impossible.
(Franklin’s result actually deals with map coloring on the Klein bottle, but since this
problem is dual to vertex coloring of graphs, the result follows. We do not need the full
strength of Franklin’s result, as an easy case-analysis shows that the only triangulated
surface that can be constructed from the complete graph on seven vertices is the torus.
Indeed, Franklin proves the dual of this statement as a preliminary to his demonstration
of the six-colorability of the Klein bottle, and his proof carries over directly). Möbius [11]
gave an example of an 8-vertex Klein bottle (the one labelled 323-A in figure 5.10), so this
shows that the minimum triangulation number for the Klein bottle is eight.

5. Determining All 8-Vertex Triangulations

We move now to a consideration of 8-vertex triangulations of the Klein bottle, and begin
by constructing all possible such triangulations. We proceed in the following way: first,
we describe all vertex-valence combinations that are possible with only eight vertices; for a
specific one of these, we consider the possible 1-skeleta (i.e., graphs) that have this valence
pattern and attempt to “fill in” each 1-skeleton with triangles. In doing so, we obtain two
different triangulations of the torus and a unique triangulation of the Klein bottle. With
this in hand, we turn case-by-case to the other valence combinations, and using an edge-
swapping technique, show that each of the others can be converted (in a reversible way)
into the triangulation we already have found. Thus the initial triangulation can be used
to produce all the others. When the analysis is complete, we find that there are exactly
six combinatorially-distinct 8-vertex triangulations of the Klein bottle (figure 5.10).

5.1 Finding All Valence Combinations

We want a triangulation of K2 with eight vertices, so V = 8, and from the Euler formula,
we find that E = 24 and F = 16. Since there are only eight vertices, we know that every
vertex has valence less than or equal to seven, and since each vertex is part of a surface,
its valence must be at least three. Let v be the vector (v3, v4, v5, v6, v7) where vi is the
number of vertices of valence i. Then the following must hold:
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v3 + v4 + v5 + v6 + v7 = V = 8

3v3 + 4v4 + 5v5 + 6v6 + 7v7 = 2E = 48

vi = 0 for all i < v7

The first of these simply counts the total number of vertices; the second counts the number
of edges, each edge being counted twice (once for each of its vertices); the third follows
from the fact that each valence-7 vertex (called a 7-vertex) is adjacent to every other
vertex, so any given vertex must be adjacent to every 7-vertex, hence its valence must be
at least v7, and there are no vertices of valence less that v7.

Given these conditions, it is easy to check that there are ten possible v-vectors:

v3 v4 v5 v6 v7

1 0 0 0 8 0
2 0 0 1 6 1
3 0 0 2 4 2
4 0 0 3 2 3
5 0 0 4 0 4
6 0 1 0 5 2
7 0 1 1 3 3
8 0 1 2 1 4
9 0 2 0 2 4

10 1 0 0 4 3

To ease notation, we will abbreviate the v-vectors by dropping the parentheses, commas,
and initial zeros. For example, the v-vector (0, 1, 1, 3, 3) will be written 1133.

We may rule out the vector 2024 immediately, since each of the 4-vertices must be adjacent
to all four 7-vertices, hence to none of the 6-vertices. Thus each 6-vertex is adjacent only to
the four 7-vertices and the remaining 6-vertex (only five vertices in all) which contradicts
the fact that it is 6-valent.

In the case of the Klein bottle, we also may rule out the vector 10043: the 3-vertex and
its star can be removed and replaced by a single triangle, which would leave a 7-vertex
triangulation; but any triangulation of the Klein bottle requires at least eight vertices, so
case 10 is impossible.

Of the remaining cases, we turn now to the 242 vector which will prove to be instrumental
in determining all 8-vertex triangulations.
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5.2 The 242 Case

The 1-skeleton of any surface, in particular a triangulation of the Klein bottle, forms a
graph. A complete graph on 8 vertices has

(

8
2

)

= 8 · 7/2 = 28 edges, while ours will have
only 24. Thus exactly four of the possible edges are not part of the 1-skeleton. Knowing
these four edges tells us which edges are in the graph, and vice versa. Thus we can consider
the complement graph which is the graph made up of the missing edges. The union
of a graph and its complement is the complete graph, while their intersection is just a
collection of vertices, with no edges at all.

We begin by determining what graphs are possible for the 242 v-vector. In this case,
two of the eight vertices are 7-valent and two are 5-valent. Let these be A, B and G, H
respectively. The remaining four are 6-valent. Since the 7-vertices A and B are adjacent
to every other vertex in the graph, A and B are adjacent to no vertices in the complement.
Vertices G and H are 5-valent in the graph so they must be 2-valent in the complement.
Similarly, the 6-vertices are 1-valent in the complement.

Symmetries:
(AB)
(CD)
(EF)

(CE)(DF)(GH)

EF

A B

C

DG

H Symmetries:
(AB)
(DE)

(CF)(GH)

EF

A B

C

DG

H

Figure 5.1: The two complement graphs for the 242 valence class.

There are two possibilities: either G and H are adjacent in the complement or they are
not. In the latter case, since G and H are not adjacent but are 2-valent, they each must
be adjacent to exactly two of the 6-vertices. Furthermore, since the 6-vertices are each
1-valent in the complement, G and H have no 6-vertex in common. This gives the first
complement pictured in figure 5.1.

On the other hand, ifG andH are adjacent, then each must have one more edge, necessarily
to distinct 6-vertices. The remaining two 6-vertices must be adjacent to each other as the
only possible fourth edge. Thus we must have one of the two complements shown in
figure 5.1.

Generators for the symmetry group of each complement graph are listed in the diagram.
Notice that the symmetries of the complement must agree with those of the original graph,
so we will use these symmetries freely in our discussions below.

Case I: The First Possible Complement

Consider the first of these complements. In it, the 5-vertices are adjacent in the original
graph (since they are not adjacent in the complement), so the edge GH appears in our
triangulation, and since we have a triangulation of a surface without boundary, there are
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exactly two triangles that contain the edge GH. Each of the two additional vertices that
form these triangles must be adjacent to both G and H. Looking at the complement,
we see that G and H are not adjacent to a common 6-vertex, hence the two triangles in
question must be formed by the two 7-vertices (together with the edge GH).

E

C

H

G

A

a

b

c

F

D

B

x

y

z

Figure 5.2: The initial configuration for the first 242 complement.

From the complement, we know that the remaining two vertices around H are E and F ,
while G is adjacent to C and D. By the symmetries (AB), (EF ) and (CD) we can assume
we have the configuration shown in figure 5.2. Now {x, y, z} = {A,C,E}, as all three of
the latter vertices must appear on the star of B. But no matter how these are placed, A
will be adjacent either to C or to E, so we will always have either triangle ACB or AEB.
Since we already have triangles ACG and AEH, and since the edges AC and AE each
appear in exactly two triangles, we know that either ACc = ACB or AEa = AEB; that
is, a = B or c = B. By the symmetry (CE)(DF )(GH), we can assume that a = B.

Then {b, c} = {D,F} since these two vertices must be on the star of A; but c 6= D since
D already appears on the C-star (and C is not a 3-vertex), so we must have b = D and
c = F . This gives us the triangle Aab = ABD, but we already have triangle BDG with
edge BD, so BDz = BDA, i.e., z = A. Then {x, y} = {C,E}, and as above, x 6= E since
E already is on the F -star, hence x = C and y = E.
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Figure 5.3: The completed 242 triangulation — a torus.

At this point, we have enough information to determine that the surface is orientable,
hence a torus, as shown in figure 5.3 (the additional vertices are determined by combining
the partial stars around the two copies of F , and then the partial stars around E). Thus
the first of the two possible 242 graphs does not realize a Klein bottle.

Case II: The Second Complement

Turning to the second complement graph, consider the 5-vertex H which is adjacent to
the 7-vertices A and B, and the 6-vertices D, E and F . Either A and B are adjacent on
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the star of H or they are not. If they are adjacent then since the edge DE does not exist
in the graph, D and E can not be adjacent on the star of H, hence, up to symmetry, we
must have the first configuration of figure 5.4. On the other hand, if A and B are not

adjacent on the star of H, then again since DE does not exist, we must have the second
configuration shown in figure 5.4 (up to symmetry).

D

F E

BA

H

A

F E

BD

H

Figure 5.4: The two possible H-stars for the second 242 complement.

Case II-a: The First H-Star

Consider the first of these two possibilities, as in figure 5.5. We know that {a, b, c} =
{B,C,G} and {c, d, e} = {A,B,C} from the complement graph. But a 6= B since B
already appears on the A-star, hence B ∈ {b, c}. Similarly, e 6= B since B is on the E-star
already, so B ∈ {c, d}. Now if c 6= B, then this would mean b = B and d = B. But this is
impossible since b and d are both on the star of c, thus we must have c = B. Using the
star of H and the symmetry (AB)(DE) we find e = A. This leaves d = C as the only
remaining vertex around F .

H

A B

D E

F

d

a

b

c e

f

g

h

ijk

l

H

A B

D E

F

C

C

G

B A

G

C

F

DGE

F

C

C A G C

B

D

C

B

D

C A G

F

H

E

Figure 5.5: The first completed H-star — a torus.

Since e = A, {f, g} = {C,G}, but f 6= C since d = C is on the e-star already, hence f = G
and g = C. This gives triangle BgE = BCE, which (together with triangle cdF = BCF )
implies h = F . This, plus triangle cDF = BDF , implies i = D and so j = G as the only
remaining vertex around B.

Returning to {a, b, c} = {B,C,G}, we know {a, b} = {C,G} since c = B already; but
d = C, so b 6= C, hence b = G and a = C. Using triangles deF = CAF and eEF = AEF



Vertex-Minimal Immersions of K2 14

we find that l = F and k = E. This is enough to show that the map must be a torus, as
indicated. This rules out the first H-star configuration.

Case II-b: The Second H-Star

The only remaining possibility is the second H-star configuration, where A and B are
not adjacent about H. Labelling this as in figure 5.6, we know {a, b, c} = {B,C,D} and
{c, d, e} = {A,C,G} (from the complement graph) so c = C as the only common member
of the two sets; thus {a, b} = {B,D}.

H

F E

A B

D

a

b
c

d

e

f

g

h
i

j

k

l

C E G C

D

B

CGEC

B

D
F H

A

H

F E

A B

D

B

D
C

A

G

C

A

F
C

G

E

C

Figure 5.6: The second completed H-star — a Klein bottle.

Now a 6= D since D already appears on the A-star, hence a = B and b = D. Then
abF = BDF together with triangle BDH implies h = F . From triangle DBh = DBF
and AaF = ABF we find g = A. Recall that {d, e} = {A,G}, but e 6= A since g = A is
already on the B-star, so d = A and e = G, which means f = C as the only remaining
vertex about B. From gBf = ABC and AaF = ABF we see that l = C. Similarly,
cdE = CAE and alA = BCA give k = E, and Ede = EAG gives j = G. Finally, this
implies i = C, which is enough to show that the figure is, in fact, a Klein bottle. Since
there are no remaining cases for the 242 graphs, this is the unique 242 triangulation of the
Klein bottle.

Moving the triangles GCB and GCD from the right side to the left, we get the represen-
tation of the unique 242 map shown in figure 5.7, which we will use throughout the rest
of the paper. The valence of each vertex is shown at the right. Note that the map has the
symmetry (AB)(CF )(DE)(GH).

5 6 6 5

6

7

5665

6

7
7

6

5

Symmetry:
(AB)(CF)(DE)(GH)

242

G C E G

D

B

GECG

D

B
A

F

H

Figure 5.7: The unique 242 Klein bottle with its valences and symmetries.
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5.3 Producing New Triangulations from Known Ones

Suppose a triangulation of a closed surface contains an edge ab. Then it also must have

two vertices c and d which form triangles abc and abd sharing the edge ab. Suppose that

the edge cd does not exist. Then we can remove the edge ab and replace it with the edge

cd, transforming the triangles abc and abd into triangles acd and bcd, as in figure 5.8.

The resulting surface remains a triangulation of the same surface as the original, but the

valence of a and b are reduced by 1 each, while those of c and d are increased by 1. We

may be able to produce new triangulations from existing triangulations in this way. Such

an edge ab will be called a conversion edge, and ab together with its associated triangles

a conversion configuration. Thus we say that ab-cd is a conversion configuration if the

edge ab and triangles abc and abd exist, but the edge cd does not.

a

b

dc

a

b

dc

Figure 5.8: Switching an edge in order to modify the valences of four vertices.

This conversion procedure is reversible, since the new triangulation produced in this way

will not include the edge ab, and hence cd-ab forms a complementary conversion configu-

ration that changes the new triangulation back into the old one.

Since we already have a unique 242 triangulation, we determine the remaining cases by

demonstrating that they must each contain conversion configurations that change them

into the 242 valence class; we then look for the resulting configurations in the unique 242

triangulation and from them we recover the original triangulations. The uniqueness of

these configurations in the (unique) 242 triangulation will guarantee the uniqueness of the

remaining cases.

Since there are only four missing edges in an 8-vertex triangulation of the Klein bottle,

and since a conversion configuration requires a missing edge, it is easy to find all possible

conversion configurations in the 242 triangulation, hence all possible 8-vertex triangulations

of the Klein bottle.

5.4 The Remaining Vectors

Consider first the v-vector 1052 and suppose there is a realization of it as a surface. The

star of the 4-vertex must contain the two 7-vertices and two of the 6-vertices, hence it must
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be one of the configurations at the left in figure 5.9:

7

7

66

x

4

6

7

67

x

4

deg    4   5   6   7
#        1   0   5   2
∆      -1 +2 -1
#        0   2   4   2

6

5

7

5

7

6

6

4

Figure 5.9: The star of the 4-vertex in a 1052 triangulation must include a 76-46
conversion configuration that changes it into a 242 triangulation.

Consider vertex x. In either case, x can not be one of the vertices already shown, since
the stars of the vertices adjacent to x already contain all these vertices; in particular, x
is not the 4-vertex, nor is it adjacent to the 4-vertex. Since the only remaining vertices
in the triangulation are 6-valent, x must be a 6-vertex. Thus we have a 76-46 conversion
configuration, and so we can replace the 76 edge by a 46 edge. The 7- and 6-vertices
become 6- and 5-valent, while the 4- and 6-vertices become 5- and 7-valent. Thus there is
a net loss of one 4-vertex and one 6-vertex with a corresponding gain of two 5-vertices. This
converts the 1052 triangulation into a 242 one containing a 75-56 conversion configuration.
But no such configuration appears in our (unique) 242 triangulation of the Klein bottle
(the 5-vertices are not adjacent in the 242 map), hence no 1052 triangulation of the Klein
bottle exists.

To rule out the 80 v-vector, we first note that the only possible conversion configuration
is 66-66; if we assume that no such configuration exists, we arrive at a contradiction
using arguments similar to those used to produce the 242 triangulation above. So any 80
triangulation must have a 66-66 conversion configuration. But there is no complementary
77-55 configuration in our 242 triangulation, so no 80 triangulation exists.

Similar arguments show that there are no Klein bottles in the 1214 class, and a unique
triangulation in each of the classes 1133 and 404, since their complementary conversion
configurations appear exactly once (up to symmetry) in the unique 242 triangulation.

For the 161 v-vector, slightly more complicated arguments are needed, which are helped
by constructing the complement graph. Using this to analyze the star of the 5-vertex, we
find that there must be a 66-56 conversion configuration leading to a 76-55 configuration in
a 242 triangulation. Two of these appear in our unique 242 triangulation, but they are the
same under the symmetry of the 242 triangulation, so there is a unique 161 triangulation
of the Klein bottle.

For the 323 v-vector, there are two possible complement graphs: in one the 5-vertices are
each connected to the other two, so in the original, the star of any 5-vertex contains a
76-66 conversion configuration transforming it into a 1214 triangulation. Since no 1214
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triangulation of the Klein bottle exists, this complement can not realize a Klein bottle. For

the second complement, arguments similar to the ones used for the other cases show that a
75-56 configuration exists which becomes a 76-46 configuration in a 1133 triangulation, a
figure that appears twice in our unique 1133 version. The 323 triangulations they generate

are distinct since the first of these contains a triangle whose vertices are the three 7-
vertices (323-A in figure 5.10), while the second does not (323-B). Thus there are exactly
two distinct 323 triangulations of the Klein bottle.

This completes the possible v-vectors, so we see that there are exactly six distinct 8-vertex
triangulations of the Klein bottle, as pictured in figure 5.10:

161

D C G D

H

A

DGCD

H

A
F

E

B

242

G C E G

D

B

GECG

D

B
A

F

H

1133

H F A H

B

C

HAFH

B

C
D

E

G

323-A

F H B F

A

D

FBHF

A

D
C

E

G

404

E F A E

B

C

EAFE

B

C
D

G

H

323-B

F H B F

D

A

FBHF

D

A
E

C

G

Figure 5.10: The six combinatorially-distinct 8-vertex triangulations of the Klein bottle.

Generators for the symmetry groups of these triangulations are given in the table below.
Note that the symmetry group in the case 404 is isomorphic to the dihedral group D4 of
order 8. We will use these symmetries in section 6 in order to reduce the number of cases

we need to analyze.

Map Symmetry

242 (AB)(CF )(DE)(GH)

1133 No Symmetries

404 (AD)(B)(C)(EF )(GH)
(AC)(BD)(EH)(FG)

161 (A)(BE)(CD)(FG)(H)

323-A (AC)(B)(DE)(FH)(G)

323-B (AC)(B)(DE)(FH)(G)
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6. Attempting to Immerse the Klein Bottle

In this section, we show that none of the six triangulations found in the previous section
can be immersed in R3. To do so, we analyze the double-sets that could occur in an
immsersion by using combinatorial means to determine which edges can intersect which
faces. The homology of these double-sets can be compared to the expected homology of
the double-sets of an immersed Klein bottle, and this will rule out all but one of these
triangulations.

This last case can be handled through a more careful analysis of the double-set: it is
possible to determine that certain edges and faces must intersect, while others must not.
Using this information, a geometric argument shows that the required configuration can
not be achieved in R3 without forcing additional, disallowed intersections.

6.1 Double-Sets of Immersed Klein Bottles

The 1-dimensional homology of the Klein bottle (using Z/2Z coefficients) has two gener-
ators: one whose tubular neighborhood is a cylinder, the other a Möbius band. Let these
be [α] and [β]; then the homology classes are [0], [α], [β], and [α+ β]. Banchoff [1] proved
that for any immersion of the Klein bottle, the double-set is homologous to [α]. The self-
intersection of the two different classes of immersions are shown in figure 6.1: these are
homologous since their union bounds a region.

Figure 6.1: The homology of the double-sets for the two types of immersions (left,right). They
represent the same class since their union bounds a region (center).

Suppose we have a closed curve embedded in K2 that is completely contained within a
disk, as in figure 6.2. Then the curve must belong to the trivial homology class, since disks
are acyclic. Thus the double-set in an immersion can not be contained entirely within a
disk, since the double-set of an immersed Klein bottle must be in class [α], not [0].

α

β

Figure 6.2: The two homology classes for the Klein bottle. Curves trapped in a disk or a Möbius band
can not be in the class [α].
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Similarly, suppose that a closed curve is contained within a Möbius band, as in figure 6.2.
Then since the Möbius band supports only two homology classes, the trivial class and [β],
and neither of these is [α], we can conclude that the double-set of an immersed Klein bottle
is not contained completely within a Möbius band.

These observations will be useful in determining which 8-vertex triangulations can not be
immersed: an analysis of their possible double-sets will show that they must lie either in
a disk or a Möbius band, which means that the double-sets have the wrong homology.

For an immersion of K2 into R3, we may assume that no two edges intersect non-trivially,
and that no vertex meets a face of which it is not a member. This is reasonable, since if a
vertex intersects a face, then moving it slightly to one side of the face will remove the vertex
from the double-set without changing whether the map is immersed or not. Similarly, if two
edges intersect, then moving one of their end-points slightly will eliminate this intersection
without destroying the immersion. The effect of this assumption is to guarantee that if
an edge and a face intersect, then they intersect in their interiors. Combining this with
lemma 2.1, we see that for such an immersion, no vertex lies on the double-set.

With this in mind, we can calculate which edges can be involved in the self-intersection
of K2

8. We know that each edge ab is a member of exactly two triangles, abc and abd.
Suppose the double-set passes through the edge ab; then ab intersects the interior of some
face A not having a or b as a vertex. This face must also intersect the triangles abc and
abd, by our assumption that edges and faces meet in their interiors. If K2

8 is immersed,
then by lemma 2.1, the face A can not contain any vertex in the set {a, b, c, d}. Thus the
vertices of A must be three of the four remaining vertices of K2

8.

1133

H F A H

B

C

HAFH

B

C
D

E

G

      AAAAAAABBBBBCCCD
      BBCCDEECCDEFDDFE
      DHGHFFGEGGFHEFHG
AB-DH ................
AC-GH ..........O.....
AD-BF ................
AE-FG ................
AF-DE ........O.......
AG-CE ...........O....
AH-BC ...............O
BC-EG ....O...........
BD-AG ..............O.
BE-CF ................
BF-EH ..O.............
BG-CD .....O..........
BH-AF ............O..O
CD-EF .O..............
CE-BD ................
CF-DH ......O.........
CG-AB ................
CH-AF .........O.....O
DE-CG .O.........O....
DF-AC ................
DG-BE ...O..........O.
EF-AB ................
EG-AD ...........O..O.
FH-BC ......O........O

O = Face and edge can intersect
. = Face and edge can not intersect

Figure 6.3: Edge-cut analysis of the 1133 triangulation. Bold edges can not intersect the
double-set, while shaded edges mark triangles that can only be entered from one side. The
double-set is homotopic to a curve that remains entirely in the non-shaded region, which is
a Möbius band, hence the triangulation can not be immersed.
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In the case of the 1133 triangulation, the unshaded region forms a Möbius Band (see
figure 6.5), and since we know that, in an immersion, the double-set must be homologous
to a curve in this region, the double-set can not be in the class [α]. But the double-set
of an immersed Klein bottle must be in class [α], a contradiction. From this we conclude
that 1133 can not be immersed in R3.

Given a specific triangulation and a specific edge ab, we can compute which faces A can
intersect ab by checking the four possible triples of vertices that are not in {a, b, c, d} to
see if any of them form triangles in the given triangulation. For, example, in the 1133
triangulation of figure 5.10, we use this technique to calculate which faces can intersect
each of the edges, as summarized in the table in figure 6.3. Note that eight edges can
not intersect any face in the triangulation; this implies that the double-set can not pass
through these edges (they are marked in bold in the figure).

Shaded lines are marked in those triangles that have only one remaining edge that can be
involved in self-intersection. If the double-set passes through one of these edges, it must
also return through this same edge in such a way that the double-set is homotopic to a
curve that does not cross the shaded edge at all; that is, the double-set is homotopic (hence
homologous) to one that remains entirely in the non-shaded portion of the triangulation.
Thus the unshaded region can be used to visualize the homology classes to which the
double-sets belong.

Performing this same type of calculation for the other five triangulations, we obtain the
regions shown in figure 6.4:

242

G C E G

D

B

GECG

D

B
A

F

H

1133

H F A H

B

C

HAFH

B

C
D

E

G

404

E F A E

B

C

EAFE

B

C
D

G

H

323-B

F H B F

D

A

FBHF

D

A
E

C

G

323-A

F H B F

A

D

FBHF

A

D
C

E

G

161

D C G D

H

A

DGCD

H

A
F

E

B

Figure 6.4: Edge-cut analysis of all six triangulations.

As before, the double-set must be homologous to a curve that lies entirely in the unshaded
region of each diagram, from which we can conclude immediately that the 404 triangulation
admits only double-sets in the trivial homology class, hence 404 can not be immersed inR3.
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The unshaded area of the 323-A triangulation forms a Möbius band (see figure 6.5). We
have seen that such a region can not support curves in the class [α], so the 323-A trian-
gulation can not be immersed in R3. Similarly, the unshaded region in 323-B also is a
Möbius band, so this triangulation, too, can not be immersed in R3.

1133

H
F

B

C

H
A

B

C
D

E

G

323-B

F H
B

D

A

B

D

A

E

C G

A

C

323-A

A

D

F
BH

F

A

C

E G

D C A

Figure 6.5: The non-shaded regions form Möbius bands for these three triangu-
lations, so their double-sets can not be in the required homology class.

For the remaining two triangulations, we need to look at specific edges more closely, and
will increase the shaded areas to the point where the unshaded regions become disks or
Möbius bands, thus ruling out an immersion in these cases as well.

6.2 The 242 Case

Consider the 242 triangulation. From the table in figure 6.6, we see that the edge AH can
intersect only faces BCG and BEG, while the edges AD and DH can intersect just face
CEF . These three faces are the only ones that can intersect ADH (all others contain one
of the vertices A, D, or H), so if the double-set crosses AH, it can not leave ADH by AD
or DH, hence it must return through AH; therefore, we can revise the diagram for 242 by
shading the edge AH, and by symmetry, the edge BG.

242

G C E G

D

B

GECG

D

B
A

F

H

      AAAAAAABBBBBCCCE
      BBCDDEFCDDEEDDEF
      CFEGHGHGFHGHFGFH
AB-CF ................
AC-BE ................
AD-GH ..............O.
AE-CG ........OO......
AF-BH .............O..
AG-DE ................
AH-DF .......O..O.....
BC-AG ...............O
BD-FH ..O..O..........
BE-GH ............O...
BF-AD ................
BG-CE ....O.O.........
BH-DE ................
CD-FG ...........O....
CE-AF .........O......
CF-DE ................
CG-BD ......O........O
DF-BC .....O..........
DG-AC ...........O...O
DH-AB ..............O.
EF-CH ...O............
EG-AB ............O...
EH-BF ...O.........O..
FH-AE .......O.....O..

O = Face and edge can intersect
. = Face and edge can not intersect

Figure 6.6: A more careful edge-cut analysis of the 242 triangulation.



Vertex-Minimal Immersions of K2 22

This separates the graph into two disks (the stars of D and E). But disks can support
only curves in the trivial homology class, so by our remarks above we see that 242 can not
be immersed in R3.

6.3 The 161 Case

The only remaining case is the 161 triangulation. Using the intersection table in figure 6.7,
we note that if the double-set passes through the edge AC, the face that cuts it must be
BEG, and in this case BEG must intersect ACF ; but no edge can intersect ACF , hence
BEG must also intersect AF or CF . The face BEG can intersect only the edges AC
and CD, however, which is a contradiction; thus the double-set does not cross AC. By
symmetry, it also does not intersect AD so we can show these edges in bold as in figure 6.7.

      AAAAAAABBBBCCCCD
      BBCCDEEDDEEDEEFF
      GHDFGFHFHFGHGHGG
AB-GH ................
AC-DF ..........O.....
AD-CG .........O......
AE-FH ................
AF-CE ........O.......
AG-BD .............O..
AH-BE ..............OO
BD-FH ............O...
BE-FG ..O........O....
BF-DE ................
BG-AE ...........O....
BH-AD ............O.O.
CD-AH .........OO.....
CE-GH .......O........
CF-AG ........O.......
CG-EF .O......O.......
CH-DE O...............
DF-BG ......O......O..
DG-AF .............O..
DH-BC .....O..........
EF-AB ...........O....
EG-BC ................
EH-AC .......O.......O
FG-CD .O....O.........

O = Face and edge can intersect
. = Face and edge can not intersect

161

D C G D

H

A

DGCD

H

A
F

E

B

Figure 6.7: A more careful edge-cut analysis of the 161 triangulation.

Suppose for the moment that the double-set does not pass through the edge DG. Then
the revised triangulation is as shown in figure 6.7. The unshaded region becomes a Möbius
band, which we have seen can not support the double-set of an immersion.

We can assume, then, that the double-set does pass through DG. The only face that can
intersect DG is CEH, so CEH must intersect ADG. From the table, we see that no edge
can intersect ADG and AD can not intersecet CEH, so CEH must also intersect AG.
Furthermore, CEH can not intersect AB or BG, so an edge of CEH must intersect ABG.
From the table, we see this can only be CH, hence CDH must also intersect ABG, and
since CDH can not intersect AB or AG, CDH must intersect BG.

Thus we have DG intersecting CEH, and BG intersecting CDH but not CEH.
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Now CEH determines a plane in R3, and since DG intersects it transversely, D and G
are on opposite sides of this plane. But this means the entire triangle CDH lies on the
opposite side of the plane from G (figure 6.8). Since BG intersects CDH, this implies that
B and D are on the same side of CEH, the one opposite G.

D

G

E

H

C

B

Figure 6.8: The geometry of the required self-intersection forces BG to
intersect CEH, which is not allowed.

Consider the stereographic projection of R3 onto the plane determined by CEH using G
as the projection point. Since DG intersects CEH, the projection of the point D onto the
plane lies in the interior of the triangle CEH. Since CDH shares the edge CH with CEH
and the projection of D lies interior to CEH, the projection of the entire triangle CDH
lies interior to the triangle CEH (see figure 6.8). In particular, the point where the edge
BG intersects the face CDH is projected into the interior of CEH. But since B lies on
the opposite side of the plane from G, this implies that the edge BG must intersect the
interior of the triangle CEH. This is a contradiction, since we know that BG does not
intersect CEH.

Thus the 161 triangulation can not be immersed in R3. Since this is the last triangulation
to consider, we see that no 8-vertex triangulation of the Klein bottle can be immersed
in R3.

7. Conclusion

In this paper we have determined how many vertices are needed to form an immersion of the
Klein bottle, and have done so for each of the different classes of immersion. We may ask
the same question for other surfaces: in each of the immersion classes, how many vertices
are needed? We have a partial answer to this already, as we have minimal immersions (or
embeddings) for the sphere, torus, and real projective-plane. Furthermore, Brehm [5,6]
and Bokowski and Brehm [4] give embeddings of minimal triangulations for the orientable
surfaces of genus 2,3 and 4, so we know the answer for at least one class for each of these
surfaces.



Vertex-Minimal Immersions of K2 24

Pinkall [12] has computed the different classes of immersions for all surfaces in R3, and for
the projective plane there are two, these being left- and right-handed version of the Boy’s
Surface. Brehm’s models [7] can be built with either handedness, so both classes can be
achieved minimally with nine vertices. The sphere has only one class, which requires four
vertices. The torus, however, has two classes: one an embedding and one an immersion.
The 7-vertex torus is an example of the embedded class, but we do not have a vertex-
minimal example of the immersed class. This class can be represented by a figure-8 tube
with a full twist. Since a figure-8 tube with only a half-twist forms a Klein Bottle, as
discussed in section 3, which requires nine vertices, it is unlikely that a representation of
the twisted figure-8 torus with fewer than nine vertices can be found.

The techniques developed in this paper should prove adequate to find the vertex-minimal
immersion in the case of the torus, but they become less readily applicable as the genus of
the surface is increased. The edge-cut analysis relies on the fact that there are few vertices
in the triangulation, and the case-by-case analysis is aided by the fact that there are few
triangulations to check. Neither of these is true for surfaces of higher genus. Nevertheless,
these approaches may be valuable in determining upper and lower bounds for the number
of vertices needed for immersions of such surfaces.

The process of edge-swapping used in section 5 shows considerable promise as a technique
of determining all triangulations of a surface with a given number of vertices, provided
there are sufficiently many “missing edges”.

Finally, the idea of an immersion generalizes to manifolds of higher dimension, so we may
consider the related question: how few vertices are required to immerse a triangulated
Mm into Rn in each of its possible immersion classes? Although this paper completes the
study of the vertex-minimal Klein bottles in R3, it raises a considerable number of related
questions that should be a rich source of problems for some time to come.
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